\(\frac{3}{4}\)t4-t2+10t
\(\frac{t^4}{2}\)-\(\frac{t^3}{3}\)+10t+4
\(\frac{2t^4}{3}\)-\(\frac{t^3}{6}\)+10t+12
2t4-\(\frac{t^3}{2}\)+5t+4
\(\alpha= \frac{dω}{dt} =6t^2−2t\)
\(\int_{0}^{ω}dw=\int_{0}^{t} (6t^2-2t)dt\)
So, \(\omega = 2t^3 – t^2 + 10\)
\(\int_{4}^{θ} θ dθ = \int_{0}^{t}(2t^3-t^2+10)dt)\)
\(\theta = \frac{t^4}{2} − \frac{t^3}{3}+10t+4\)
\(\therefore ,\) The correct option is (B): \(\frac{t^4}{2} − \frac{t^3}{3}+10t+4\)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: