From energy conservation :
\(\frac{1}{2}mv_0^2=mgh\Rightarrow v_0=\sqrt{2gh}\) ………………….Option (A) is correct.
\(tan\theta=\frac{v_z}{v_x}=\frac{\sqrt{2g(3h)}}{\sqrt{2gh}}=\sqrt{3}\)
\(\theta=60^{\circ}\) ……………………………Option (B) is correct.
\(\vec{v}=\sqrt{2gh}\,\hat{i}\,-\,\sqrt{2gh(3h)}\,\hat{k}\)
\(=\sqrt{2gh}(\hat{i}-\sqrt3 \hat{k})\) …………………………….Option(C) is incorrect.
d=\(v_0\sqrt{\frac{2(3h)}{g}}=\sqrt{2gh}\sqrt{\frac{2\times3h}{g}}\)
d=\(2h\sqrt3\)
\(\frac{d}{h_1}=2\sqrt3\) …………………….. Option (D) is correct.
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.
The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a rigid body.
Other examples: