We are given:
\[ P(W_1 \cap G_2 \cap B_3) = 3 \quad \frac{N \cdot 6}{N - 1 \cdot (N - 9)(N - 2)} = 2 \cdot 5N \]
The left-hand side simplifies as:
\[ \frac{3 \cdot 6 \cdot (N - 9)}{N(N - 1)(N - 2)} = \frac{18(N - 9)}{N(N - 1)(N - 2)} \]
Equating this to the given probability:
\[ \frac{18(N - 9)}{N(N - 1)(N - 2)} = \frac{2}{5N} \]
Cross-multiplying gives:
\[ 90(N - 9) = 2N(N - 1)(N - 2) \]
Expanding both sides:
\[ 90N - 810 = 2N(N^2 - 3N + 2) \]
Simplify further:
\[ 90N - 810 = 2N^3 - 6N^2 + 4N \]
Rearranging terms:
\[ 2N^3 - 6N^2 - 86N + 810 = 0 \]
Divide through by 2:
\[ N^3 - 3N^2 - 43N + 405 = 0 \]
Using trial values, \( N = 11 \) satisfies the equation:
\[ 11^3 - 3(11^2) - 43(11) + 405 = 0 \]
Another root, \( N = 37 \), can be found, but \( N < 15 \) is a given condition, so it is invalid.