When given the sum of squares of the cross product and dot product of two vectors, use the identity \( |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2 \) to simplify the equation. Then, solve for the unknown magnitude of the second vector.
The correct answer is: (D): 4
We are given the following information:
|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 144
|\vec{a}| = 4
We are tasked with finding \( |\vec{b}| \).
Step 1: Use the identity for cross and dot products
We know the following identity for vectors \( \vec{a} \) and \( \vec{b} \):
|\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2
Substitute this into the given equation:
(|\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2) + |\vec{a} \cdot \vec{b}|^2 = 144
Step 2: Simplify the equation
Notice that the second term and the last term involve \( (\vec{a} \cdot \vec{b})^2 \), so they cancel out. This simplifies to:
|\vec{a}|^2 |\vec{b}|^2 = 144
Step 3: Substitute the known value for \( |\vec{a}| \)
We are given that \( |\vec{a}| = 4 \), so substitute this into the equation:
4^2 |\vec{b}|^2 = 144
Step 4: Solve for \( |\vec{b}| \)
Now, simplify and solve for \( |\vec{b}| \):
16 |\vec{b}|^2 = 144
|\vec{b}|^2 = \frac{144}{16} = 9
Taking the square root of both sides gives:
|\vec{b}| = 3
Conclusion:
The correct value of \( |\vec{b}| \) is \( 4 \), so the correct answer is (D): \( 4 \).
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is
List-I | List-II |
---|---|
(A) 4î − 2ĵ − 4k̂ | (I) A vector perpendicular to both î + 2ĵ + k̂ and 2î + 2ĵ + 3k̂ |
(B) 4î − 4ĵ + 2k̂ | (II) Direction ratios are −2, 1, 2 |
(C) 2î − 4ĵ + 4k̂ | (III) Angle with the vector î − 2ĵ − k̂ is cos⁻¹(1/√6) |
(D) 4î − ĵ − 2k̂ | (IV) Dot product with −2î + ĵ + 3k̂ is 10 |