Arrange the following compounds in increasing order of their boiling point: \[ \text{(CH}_3\text{)}_2\text{NH, CH}_3\text{CH}_2\text{NH}_2, \text{CH}_3\text{CH}_2\text{OH} \]
To determine the increasing order of boiling points of the given compounds, we analyze the nature and strength of their intermolecular forces:
The order of increasing boiling points is:
\(( CH 3 ) 2 NH < CH 3 CH 2 NH 2 < CH 3 CH 2 OH (CH 3 ) 2 NH\)
\(1\,\text{g}\) of \( \mathrm{AB_2} \) is dissolved in \(50\,\text{g}\) of a solvent such that \( \Delta T_f = 0.689\,\text{K} \). When \(1\,\text{g}\) of \( \mathrm{AB} \) is dissolved in \(50\,\text{g}\) of the same solvent, \( \Delta T_f = 1.176\,\text{K} \). Find the molar mass of \( \mathrm{AB_2} \). Given \( K_f = 5\,\text{K kg mol}^{-1} \). \((\textit{Report to nearest integer.})\) Both \( \mathrm{AB_2} \) and \( \mathrm{AB} \) are non-electrolytes.
