Step 1: Compute the terminal voltage.
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\section*{Explanation of Power Factor, Voltage, and Angle Calculations}
\begin{align*}
\text{Power Factor (pF)} & = \frac{\sqrt{3}}{2} = 30^\circ \text{ lagging.}
\end{align*}
This indicates that the power factor corresponds to a lagging angle of \(30^\circ\), meaning the current lags the voltage by \(30^\circ\).
\subsection{Voltage Magnitude (\(E\))}
The voltage \(E\) is determined using the following formula:
\[
E = \sqrt{(V \cos 30^\circ + IR)^2 + (V \sin 30^\circ + IX)^2}.
\]
Here:
\(V \cos 30^\circ\) and \(V \sin 30^\circ\) are the voltage components in the horizontal and vertical directions, respectively.
\(IR\) and \(IX\) are the resistive and reactive voltage drops.
Substituting the values:
\[
\frac{11K}{\sqrt{3}} = \sqrt{\left(V \cdot \frac{\sqrt{3}}{2}\right)^2 + \left(\frac{V}{2} + 524.86(5)\right)^2}.
\]
Squaring both sides:
\[
\left(\frac{11K}{\sqrt{3}}\right)^2 = V^2 \cdot \frac{3}{4} + \left(\frac{V}{2} + 2624.319\right)^2.
\]
Expanding the terms:
\[
\left(\frac{11K}{\sqrt{3}}\right)^2 = \frac{3}{4}V^2 + \frac{V^2}{4} + 2624.319V + 2624.319^2.
\]
Solving for \(V\), we find:
\[
V_t = 4618.105 \, \text{V}.
\]
\subsection*{Impedance Voltage (\((IZ)^2\))}
The square of the impedance voltage is given by:
\[
(IZ)^2 = E^2 + V^2 - 2EV \cos \delta.
\]
Substituting the known values:
\[
(2624.319)^2 = \left(\frac{11K}{\sqrt{3}}\right)^2 + (4618.105)^2 - 2\left(\frac{11K}{\sqrt{3}}\right)(4618.105) \cos \delta.
\]
Solving for \(\delta\), the phase angle difference:
\[
\delta = 20.96^\circ.
\]
\subsection{Power Factor (pF)}
Finally, the overall power factor is calculated as:
\[
pF = \cos(20.96^\circ + 30^\circ).
\]
Simplifying:
\[
pF = \cos(50.96^\circ) = 0.629 \, \text{lagging}.
\]