Consider the state-space model
\[ \dot{\mathbf{x}}(t) = A \mathbf{x}(t) + B r(t), \quad y(t) = C \mathbf{x}(t) \]
where \( \mathbf{x}(t) \), \( r(t) \), and \( y(t) \) are the state, input, and output, respectively. The matrices \( A \), \( B \), and \( C \) are given below:
\[ A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix} \]
The sum of the magnitudes of the poles is __________ (round off to the nearest integer).
In the following circuit, the average voltage \[ V_o = 400 \left(1 + \frac{\cos \alpha}{3} \right) {V}, \] where \( \alpha \) is the firing angle. If the power dissipated in the resistor is 64 W, then the closest value of \( \alpha \) in degrees is:

In the circuit, \( I_{\text{DC}} \) is an ideal current source, the transistors \( M_1 \), \( M_2 \) are assumed to be biased in saturation wherein \( V_{\text{in}} \) is the input signal and \( V_{\text{DC}} \) is the fixed DC voltage. Both transistors have a small signal resistance of \( R_{ds} \) and transconductance of \( g_m \). The small signal output impedance of the circuit is:

Assuming ideal op-amps, the circuit represents:

Selected data points of the step response of a stable first-order linear time-invariant (LTI) system are given below. The closest value of the time constant (in seconds) of the system is:
\[ \begin{array}{|c|c|} \hline \textbf{Time (sec)} & \textbf{Output} \\ \hline 0.6 & 0.78 \\ 1.6 & 2.8 \\ 2.6 & 2.98 \\ 10 & 3 \\ \infty & 3 \\ \hline \end{array} \]