Step 1: Strain–displacement relations.
$\varepsilon_{xx}=\dfrac{\partial u}{\partial x}=2Cxy$,
$\varepsilon_{yy}=\dfrac{\partial v}{\partial y}=0$,
$\gamma_{xy}=\dfrac{\partial u}{\partial y}+\dfrac{\partial v}{\partial x}=Cx^2$.
Step 2: Constitutive law (plane stress).
$\displaystyle \sigma_{xx}=\frac{E}{1-\mu^2}\big(\varepsilon_{xx}+\mu\varepsilon_{yy}\big)
=\frac{E}{1-\mu^2}\varepsilon_{xx}$.
With $E=1$ and $\mu=0.5$: $\displaystyle \frac{E}{1-\mu^2}=\frac{1}{1-0.25}=\frac{4}{3}$.
Hence $\sigma_{xx}=\dfrac{4}{3}\varepsilon_{xx} \Rightarrow \varepsilon_{xx}=\dfrac{3}{4}\sigma_{xx}=\dfrac{3}{4}(40xy)=30xy$.
But $\varepsilon_{xx}=2Cxy \Rightarrow 2C=30 \Rightarrow C=15$.
Step 3: Shear stress from shear strain.
$G=\dfrac{E}{2(1+\mu)}=\dfrac{1}{2(1.5)}=\dfrac{1}{3}$, and $\tau_{xy}=G\,\gamma_{xy}=G(Cx^2)=\dfrac{C}{3}x^2$.
With $C=15$: $\tau_{xy}=5x^2 \Rightarrow \alpha=5$.
\[
\boxed{\alpha=5~\text{N/m}^4}
\]
The figures, I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence as IV?
For the beam and loading shown in the figure, the second derivative of the deflection curve of the beam at the mid-point of AC is given by \( \frac{\alpha M_0}{8EI} \). The value of \( \alpha \) is ........ (rounded off to the nearest integer).