To find the force acting on the wire segment, we use the formula for the magnetic force on a current-carrying conductor: \(\vec{F} = I (\vec{L} \times \vec{B})\), where \(I\) is the current, \(\vec{L}\) is the length vector of the wire, and \(\vec{B}\) is the magnetic field. Given values are \(I = 0.5 \, \text{A}\), \(\vec{L} = 1 \, \text{cm} = 0.01 \, \text{m} \, \hat{i}\), and \(\vec{B} = (0.4 \, \text{mT}) \hat{j} + (0.6 \, \text{mT}) \hat{k}\). First, convert the magnetic field units: \(1 \, \text{mT} = 10^{-3} \, \text{T}\), so \(\vec{B} = (0.4 \times 10^{-3}) \hat{j} + (0.6 \times 10^{-3}) \hat{k} \, \text{T}\).
Next, calculate the cross product \(\vec{L} \times \vec{B}\):
\[\vec{L} \times \vec{B} = (0.01 \, \hat{i}) \times \left((0.4 \times 10^{-3}) \hat{j} + (0.6 \times 10^{-3}) \hat{k}\right)\]
\[= 0.01 \times 0.4 \times 10^{-3} \, (\hat{i} \times \hat{j}) + 0.01 \times 0.6 \times 10^{-3} \, (\hat{i} \times \hat{k})\]
\[= 0.4 \times 10^{-5} \, \hat{k} - 0.6 \times 10^{-5} \, \hat{j}\] (using \(\hat{i} \times \hat{j} = \hat{k}\) and \(\hat{i} \times \hat{k} = -\hat{j}\))
Thus, \(\vec{L} \times \vec{B} = (0 \hat{i} - 0.6 \times 10^{-5} \hat{j} + 0.4 \times 10^{-5} \hat{k})\).
Now, multiply by current \(I\):
\[\vec{F} = 0.5 \times (0 \hat{i} - 0.6 \times 10^{-5} \hat{j} + 0.4 \times 10^{-5} \hat{k})\]
\[= (0 \times 0.5) \hat{i} - (0.6 \times 10^{-5} \times 0.5) \hat{j} + (0.4 \times 10^{-5} \times 0.5) \hat{k}\]
\[= -0.3 \times 10^{-5} \hat{j} + 0.2 \times 10^{-5} \hat{k}\]
Convert \(\vec{F}\) to \(\text{mN}\):
\[= -3 \times 10^{-6} \hat{j} + 2 \times 10^{-6} \hat{k} \, \text{N}\]
This can be expressed in \(\text{mN}\) as:
\[= -3 \hat{j} \, \mu\text{N} + 6 \hat{k} \, \mu\text{N} = (-3 \hat{i} + 6 \hat{k}) \, \mu\text{N}\]
The correct force is \( (-3 \hat{i} + 6 \hat{k}) \, \text{mN} \).
Bittu and Chintu were partners in a firm sharing profit and losses in the ratio of 4:3. Their Balance Sheet as at 31st March, 2024 was as
On $1^{\text {st }}$ April, 2024, Diya was admitted in the firm for $\frac{1}{7}$ share in the profits on the following terms:
Prepare Revaluation Account and Partners' Capital Accounts.
(a) Calculate the standard Gibbs energy (\(\Delta G^\circ\)) of the following reaction at 25°C:
\(\text{Au(s) + Ca\(^{2+}\)(1M) $\rightarrow$ Au\(^{3+}\)(1M) + Ca(s)} \)
\(\text{E\(^\circ_{\text{Au}^{3+}/\text{Au}} = +1.5 V, E\)\(^\circ_{\text{Ca}^{2+}/\text{Ca}} = -2.87 V\)}\)
\(\text{1 F} = 96500 C mol^{-1}\)
Define the following:
(i) Cell potential
(ii) Fuel Cell