The force on a current-carrying wire in a magnetic field is given by the equation:
\[ \vec{F} = I \ell (\vec{B} \times \hat{l}) \]
Where: - \( I \) is the current, - \( \ell \) is the length of the wire, - \( \vec{B} \) is the magnetic field, - \( \hat{l} \) is the unit vector in the direction of the current.
The cross product \( \vec{B} \times \hat{l} \) can be calculated using the determinant of a matrix:
\[ \vec{B} \times \hat{l} = \left| \begin{matrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 0.4 \times 10^{-3} & 0.6 \times 10^{-3} \\ 1 & 0 & 0 \end{matrix} \right| \]
Simplifying the determinant gives:
\[ \vec{B} \times \hat{l} = (0.4 \times 10^{-3} \hat{k} + 0.6 \times 10^{-3} \hat{j}) \]
Now, using the formula \( \vec{F} = I \ell (\vec{B} \times \hat{l}) \), we substitute the given values:
\[ \vec{F} = 0.5 \times 0.01 \times (0.4 \times 10^{-3} \hat{k} + 0.6 \times 10^{-3} \hat{j}) \]
Simplifying this expression gives:
\[ \vec{F} = (-3 \hat{i} + 6 \hat{k}) \, \text{mN} \]
The correct answer is (D): The force is \( \vec{F} = -3 \hat{i} + 6 \hat{k} \, \text{mN} \).