\(\frac {5x}{(x+1)(x^2-4)}\)= \(\frac {5x}{(x+1)(x+2)(x-2)}\)
Let \(\frac {5x}{(x+1)(x+2)(x-2)}\) = \(\frac {A}{(x+1)} +\frac {B}{(x+2)} + \frac {C}{(x-2)}\)
\(5x = A(x+2)(x-2) + B(x+1)(x-2) + C(x+1)(x+2) ….....(1)\)
Substituting x = −1, −2, and 2 respectively in equation (1), we obtain
A = \(\frac 53\), B= \(-\frac {5}{2}\), and C = \(\frac 56\)
∴ \(\frac {5x}{(x+1)(x+2)(x-2)}\) = \(\frac {5}{3(x+1)} -\frac {5}{2(x+2)} + \frac {5}{6(x-2)}\)
⇒ \(∫\)\(\frac {5x}{(x+1)(x+2)(x-2)} \ dx\) = \(\frac 53 ∫\frac {1}{(x+1)}dx-\frac 52 ∫\frac {1}{(x+2)}dx+\frac 56 ∫\frac {1}{(x-2)}dx\)
= \(\frac 53\ log|x+1|-\frac 52\ log|x+2|+\frac 56\ log|x-2|+C\)
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,