Question:

Integrate the function: \(\frac{5x+3}{\sqrt{x^2+4x+10}}\)

Updated On: Oct 4, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The correct answer is: \(5\sqrt{x^2+4x+10} - 7 log|(x+2)+\sqrt{x^2+4x+10}|+C\)
Let \(5x+3 = A \frac{d}{dx}(x^2+4x+10)+B\)
\(⇒ 5x+3 = A(2x+4)+B\)
Equating the coefficients of \(x\) and constant term, we obtain
\(2A = 5 ⇒ A = \frac{5}{2}\)
\(4A+B = 3 ⇒ B =-7\)
\(∴ 5x+3 = \frac{5}{2}(2x+4)-7\)
\(⇒ ∫\frac{5x+3}{\sqrt{x^2+4x+10}} dx = ∫\frac{\frac{5}{2}(2x+4)-7}{\sqrt{x^2+4x+10}} dx\)
\(=\frac{5}{2} ∫\frac{2x+4}{\sqrt{x^2+4x+10}} dx-7 ∫\frac{1}{\sqrt{x^2+4x+10}} dx\)
Let \(I_1 = ∫\frac{2x+4}{\sqrt{x^2+4x+10}} dx\,\, and\,\, I_2 = ∫\frac{1}{\sqrt{x^2+4x+10}} dx\)
\(∴ ∫\frac{5x+3}{\sqrt{x^2+4x+10}} dx = \frac{5}{2I_1}-7I_2                                ...(1)\)
Then, \(I_1 = ∫\frac{2x+4}{\sqrt{x^2+4x+10}} dx\)
Let \(x^2+4x+10 = t\)
\(∴(2x+4)dx = dt\)
\(⇒ I_1 = ∫\frac{dt}{t} = 2\sqrt{t} = 2\sqrt{x^2+4x+10}                                   ...(2)\)
\(I_2 = ∫\frac{1}{\sqrt{x^2+4x+10}} dx\)
\(= ∫\frac{1}{\sqrt{(x^2+4x+4)+6}} dx\)
\(= ∫\frac{1}{(x+2)^2+(\sqrt{6})^2} dx\)
\(= log |(x+2)\sqrt{x^2+4x+10}|\)                                              ...(3)
Using equations (2) and (3) in (1), we obtain
\(∫\frac{5x+3}{\sqrt{x^2+4x+10}} dx = \frac{5}{2}[2\sqrt{x^2+4x+10}]-7log|(x+2)+\sqrt{x^2+4x+10}|+C\)
\(=5\sqrt{x^2+4x+10} - 7 log|(x+2)+\sqrt{x^2+4x+10}|+C\)
Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.