Determine the nature of force acting between two parallel current-carrying conductors when:
(i) Current is in the same direction in conductors,
(ii) Current is in the opposite direction in conductors.
The wire loop shown in the figure carries a steady current \( I \). Each straight section of the loop has length \( d \). A part of the loop lies in the \( xy \)-plane and the other part is tilted at \( 30^\circ \) with respect to the \( xz \)-plane. The magnitude of the magnetic dipole moment of the loop (in appropriate units) is:
The effective magnetic moment (in units of Bohr magneton) for the ground state of an isolated 4𝑓 ion with 6 unpaired electrons in the 4𝑓 shell according to Hund’s rules is (in integer) _____
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $