A charge \( Q \) is distributed over two concentric hollow spheres of radii \( r \) and \( R \) (\( R>r \)) such that their surface charge densities are equal. Find the electric potential at their common center.
A proton is moving undeflected in a region of crossed electric and magnetic fields at a constant speed of \( 2 \times 10^5 \, \text{m/s} \). When the electric field is switched off, the proton moves along a circular path of radius 2 cm. The magnitude of electric field is \( x \times 10^4 \, \text{N/C} \). The value of \( x \) is \(\_\_\_\_\_\). (Take the mass of the proton as \( 1.6 \times 10^{-27} \, \text{kg} \)).
In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by:
Show that the circumference of the orbit of an electron revolving in the \( n \)-th orbit is equal to \( n\lambda \) with the help of Bohr's quantum theory. Also, show the emission and absorption spectral lines between energy levels \( n = 1 \) and \( n = 3 \) of hydrogen atom.
Two parallel plate capacitors of capacitances \( C \) and \( 2C \) are joined with a battery of voltage difference \( V \) as shown in the figure. If the battery is removed and the space between the plates of the capacitor of capacitance \( C \) is completely filled with a material of dielectric constant \( K \), then find out:
Differentiate between interference and diffraction of light. Explain qualitatively the diffraction phenomenon of light by a single slit. Light of 6000 Ã… wavelength is incident normally on a single slit of width \( 3 \times 10^{-4} \, \text{cm} \). Find out the angular width of the central maxima.
What do you mean by the current sensitivity of a moving coil galvanometer? Resistance of a galvanometer is \( 50 \, \Omega \) and for full-scale deflection, the current is \( 0.05 \, \mathrm{A} \). What would be the required length of a wire to convert it into an ammeter of 5 A range? (Area of cross-section of wire = \( 2.7 \times 10^{-6} \, \mathrm{m^2} \), specific resistance of the wire material = \( 5.0 \times 10^{-7} \, \Omega \cdot \mathrm{m} \))
Obtain the formula for the internal resistance of a cell in terms of \( E \), \( V \), and \( R \), where \( E \), \( V \), and \( R \) are the electromotive force of the cell, potential difference across the external resistance, and external resistance, respectively.