Let \(\frac {3x-1}{(x+2)^2}\) \(=\) \(\frac {A}{(x+2)}+\frac {B}{(x+2)^2}\)
\(⇒ 3x-1 = A(x+2)+B\)
\(Equating\ the \ coefficient \ of\ x \ and \ constant\ term, \ we \ obtain\)
\(A = 3\)
\(2A + B = −1 ⇒ B = −7\)
∴ \(\frac {3x-1}{(x+2)^2}\) \(=\) \(\frac {3}{(x+2)} - \frac {7}{(x+2)^2}\)
⇒ \(∫\)\(\frac {3x-1}{(x+2)^2}\ dx\) \(=\) \(3∫\frac {1}{(x+2)}dx - 7∫\frac {x}{(x+2)^2}dx\)
\(= 3log\ |x+2|-7(\frac {-1}{(x+2)})+C\)
\(= 3log\ |x+2|+\frac {7}{(x+2)} +C\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]

The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,
