Let \(\frac {3x-1}{(x+2)^2}\) \(=\) \(\frac {A}{(x+2)}+\frac {B}{(x+2)^2}\)
\(⇒ 3x-1 = A(x+2)+B\)
\(Equating\ the \ coefficient \ of\ x \ and \ constant\ term, \ we \ obtain\)
\(A = 3\)
\(2A + B = −1 ⇒ B = −7\)
∴ \(\frac {3x-1}{(x+2)^2}\) \(=\) \(\frac {3}{(x+2)} - \frac {7}{(x+2)^2}\)
⇒ \(∫\)\(\frac {3x-1}{(x+2)^2}\ dx\) \(=\) \(3∫\frac {1}{(x+2)}dx - 7∫\frac {x}{(x+2)^2}dx\)
\(= 3log\ |x+2|-7(\frac {-1}{(x+2)})+C\)
\(= 3log\ |x+2|+\frac {7}{(x+2)} +C\)
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,