Question:

\(3\!\begin{bmatrix}7&-2 \\ 8&0\end{bmatrix}=\ \ ?\)

Show Hint

A scalar in front of a matrix distributes to every position.
  • \(\begin{bmatrix}21&-6 \\ 8&0\end{bmatrix}\)
     

  • \(\begin{bmatrix}7&-2 \\ 24&0\end{bmatrix}\)
     

  • \(\begin{bmatrix}21&-6 \\ 24&0\end{bmatrix}\)
     

  • \(\begin{bmatrix}21&-2 \\ 8&0\end{bmatrix}\)
     

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Multiply each entry by \(3\): \[ 3\!\begin{bmatrix}7&-2 \\ 8&0\end{bmatrix} =\begin{bmatrix}3\times7&3\times(-2) \\ 3\times8&3\times0\end{bmatrix} =\begin{bmatrix}21&-6 \\ 24&0\end{bmatrix}. \]
Was this answer helpful?
0
0

Top Questions on Matrix Operations

View More Questions