Question:

\(\frac{(3+7)\times2-4}{(3+7)\times(2-4) }+\frac{3+7\times2-5}{3+7\times(2-5)}\)

Updated On: May 11, 2025
  • \(2\)
  • \(-\frac{2}{5}\)
  • \(-\frac{22}{15}\)
  • \(-\frac{7}{5}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

To solve the problem, we need to simplify the expression:

\(\frac{(3+7)\times2-4}{(3+7)\times(2-4)}+\frac{3+7\times2-5}{3+7\times(2-5)}\)

Step-by-step Simplification:

  • First Fraction:
    • Numerator: \((3+7)\times2-4 = 10\times2-4 = 20-4 = 16\)
    • Denominator: \((3+7)\times(2-4) = 10\times(-2) = -20\)
  • The first fraction is: \(\frac{16}{-20} = -\frac{4}{5}\).
  • Second Fraction:
    • Numerator: \(3+7\times2-5 = 3+14-5 = 12\)
    • Denominator: \(3+7\times(2-5) = 3+7\times(-3) = 3-21 = -18\)
  • The second fraction is: \(\frac{12}{-18} = -\frac{2}{3}\).
  • Combine the fractions:\[-\frac{4}{5} + \left(-\frac{2}{3}\right)\]
  • Find a common denominator: The LCM of 5 and 3 is 15.
  • Rewrite the fractions:\[-\frac{4}{5} = -\frac{4\times3}{5\times3} = -\frac{12}{15},\quad -\frac{2}{3} = -\frac{2\times5}{3\times5} = -\frac{10}{15}\]
  • Combine: \[-\frac{12}{15} - \frac{10}{15} = -\frac{22}{15}\]

Therefore, the correct answer is \(-\frac{22}{15}\).

Was this answer helpful?
0
0