\(\frac {2x}{(x^2+1)(x^2+3)}\)
\(Let \ x^2 = t ⇒ 2x \ dx = dt\)
∴ \(∫\)\(\frac {2x}{(x^2+1)(x^2+3)}dx\) = \(∫\frac {dt}{(t+1)(t+3)}\) ...(1)
\(Let\) \(\frac {dt}{(t+1)(t+3)}\) = \(\frac {A}{(t+1)}+\frac {B}{(t+3)}\)
\(1 = A(t+3)+B(t+1)\) ...(1)
Substituting t = −3 and t = −1 in equation (1), we obtain
\(A = \frac 12\ and \ B = -\frac 12\)
∴ \(\frac {1}{(t+1)(t+3)}\) = \(\frac {1}{2(t+1)}-\frac {1}{2(t+3)}\)
⇒ \(∫\)\(\frac {2x}{(x^2+1)(x^2+3)}dx\) = \(∫\)\([\frac {1}{2(t+1)}-\frac {1}{2(t+3)}]dt\)
=\(\frac 12log\ |(t+1)|-\frac 12log\ |t+3|+C\)
=\(\frac 12\ log|\frac {t+1}{t+3}|+C\)
=\(\frac 12\ log|\frac {x^2+1}{x^2+3}|+C\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]


The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,
