\(\frac{2x-3}{(x^2-1)(2x+3)}\)= \(\frac{2x-3}{(x+1)(x-1)(2x+3)}\)
Let \(\frac{2x-3}{(x+1)(x-1)(2x+3)}= \frac{A}{(x+1)}\frac{B}{(x-1)}+\frac{C}{(2x+3)}\)
\(\Rightarrow\) (2x-3) = A(x-1)(2x+3)+B(x+1)(2x+3)+C(x+1)(x-1)
\(\Rightarrow\) (2x-3) = A(2x2+x-3)+B(2x2+5x+3)+C(x2-1)
\(\Rightarrow\) (2x-3) = A(2A+2B+C)x2+(A+5B)x+(-3A+3B-C)
Equating the coefficients of x2 and x, we obtain
B = -\(\frac{1}{10}\), A = \(\frac{5}{2}\), and C = -\(\frac{24}{5}\)
∴ \(\frac{2x-3}{(x+1)(x-1)(2x+3)}= \frac{5}{2(x+1)}\frac{1}{10(x-1)}+\frac{24}{5(2x+3)}\)
\(\Rightarrow\int\frac{2x-3}{(x+1)(x-1)(2x+3)}dx= \frac{5}{2}\int\frac{1}{(x+1)}dx-\frac{1}{10}\int\frac{1}{x-1}dx-\frac{24}{5}\int\frac{1}{(2x+3)}dx\)
= \(\frac{5}{2}\log\mid x+1\mid-\frac{1}{10}\log \mid x-1\mid-\frac{24}{5*2}\log\mid 2x+3\mid\)
=\(\frac{5}{2}\log\mid x+1\mid-\frac{1}{10}\log\mid x-1\mid-\frac{12}{5}\log\mid 2x+3 \mid+C\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,
