\(\frac{2x-3}{(x^2-1)(2x+3)}\)= \(\frac{2x-3}{(x+1)(x-1)(2x+3)}\)
Let \(\frac{2x-3}{(x+1)(x-1)(2x+3)}= \frac{A}{(x+1)}\frac{B}{(x-1)}+\frac{C}{(2x+3)}\)
\(\Rightarrow\) (2x-3) = A(x-1)(2x+3)+B(x+1)(2x+3)+C(x+1)(x-1)
\(\Rightarrow\) (2x-3) = A(2x2+x-3)+B(2x2+5x+3)+C(x2-1)
\(\Rightarrow\) (2x-3) = A(2A+2B+C)x2+(A+5B)x+(-3A+3B-C)
Equating the coefficients of x2 and x, we obtain
B = -\(\frac{1}{10}\), A = \(\frac{5}{2}\), and C = -\(\frac{24}{5}\)
∴ \(\frac{2x-3}{(x+1)(x-1)(2x+3)}= \frac{5}{2(x+1)}\frac{1}{10(x-1)}+\frac{24}{5(2x+3)}\)
\(\Rightarrow\int\frac{2x-3}{(x+1)(x-1)(2x+3)}dx= \frac{5}{2}\int\frac{1}{(x+1)}dx-\frac{1}{10}\int\frac{1}{x-1}dx-\frac{24}{5}\int\frac{1}{(2x+3)}dx\)
= \(\frac{5}{2}\log\mid x+1\mid-\frac{1}{10}\log \mid x-1\mid-\frac{24}{5*2}\log\mid 2x+3\mid\)
=\(\frac{5}{2}\log\mid x+1\mid-\frac{1}{10}\log\mid x-1\mid-\frac{12}{5}\log\mid 2x+3 \mid+C\)
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,