\(\int (2x^2+e^x)dx\)
= \(2 \int x^2dx+ \int e^x dx\)
=\(2\bigg(\frac{x^3}{3}\bigg)+e^x+C\)
= \(\frac{2}{3}x^3+e^x+C\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
Observe the given sequence of nitrogenous bases on a DNA fragment and answer the following questions: 
(a) Name the restriction enzyme which can recognise the DNA sequence.
(b) Write the sequence after restriction enzyme cut the palindrome.
(c) Why are the ends generated after digestion called as ‘Sticky Ends’?
The representation of the area of a region under a curve is called to be as integral. The actual value of an integral can be acquired (approximately) by drawing rectangles.
Also, F(x) is known to be a Newton-Leibnitz integral or antiderivative or primitive of a function f(x) on an interval I.
F'(x) = f(x)
For every value of x = I.
Integral calculus helps to resolve two major types of problems: