Question:

\(\int\frac{2\tan x+3}{\sin^2x+2\cos^2x}dx=\)

Updated On: Jun 10, 2024
  • \(\frac{3}{\sqrt2}sin^{-1}\frac{\sin x}{\sqrt2}+ln|\sin^2x+2|+C\)
  • \(\frac{3}{\sqrt2}tan^{-1}\frac{\tan x}{\sqrt2}+ln|\tan^2x+2|+C\)
  • \(\frac{3}{\sqrt2}tan^{-1}\frac{\tan x}{\sqrt2}-ln|\tan^2x+2|+C\)
  • \(\frac{3}{\sqrt2}cos^{-1}\frac{\cos x}{\sqrt2}+ln|\sin^2x+2|+C\)
  • \(\frac{3}{\sqrt2}cos^{-1}\frac{\cos x}{\sqrt2}-ln|\cos^2x+2|+C\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The correct option is (B): \(\frac{3}{\sqrt2}tan^{-1}\frac{\tan x}{\sqrt2}+ln|\tan^2x+2|+C\)
Was this answer helpful?
0
0