\(\Delta H^\circ = -296 \, \text{kJ} - (3 \times 8.3 \, \text{J K}^{-1} \text{mol}^{-1} \times 298 \, \text{K} \times 10^{-3}) \approx -303.42 \, \text{kJ}\)
\(\Delta H^\circ(\text{HgO(s)}) = \Delta H^\circ(\text{HgO(s)}) - \Delta H^\circ(\text{Hg(g)}) - 2 \times \Delta H^\circ(\text{Hg(s)})\)
\(\Delta H^\circ(\text{HgO(s)}) = -303.42 + 122.64 - 180.78 = -303.42 + 90.39 \, \text{kJ mol}^{-1}\)
Thus, the absolute value of the enthalpy of formation for solid mercury oxide HgO(s)) is 90.39 kJ mol−1.
Consider the following statements:
(A) Availability is generally conserved.
(B) Availability can neither be negative nor positive.
(C) Availability is the maximum theoretical work obtainable.
(D) Availability can be destroyed in irreversibility's.
List-I (Details of the processes of the cycle) | List-II (Name of the cycle) |
---|---|
(A) Two adiabatic, one isobaric and two isochoric | (I) Diesel |
(B) Two adiabatic and two isochoric | (II) Carnot |
(C) Two adiabatic, one isobaric and one isochoric | (III) Dual |
(D) Two adiabatics and two isothermals | (IV) Otto |
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
An electrochemical cell is a device that is used to create electrical energy through the chemical reactions which are involved in it. The electrical energy supplied to electrochemical cells is used to smooth the chemical reactions. In the electrochemical cell, the involved devices have the ability to convert the chemical energy to electrical energy or vice-versa.