Let \(y = \cot\theta\). The expression becomes a quadratic in y:
\( 2y^2 - y - 3 \)
We need to factorize this quadratic. We are looking for two numbers whose product is \(2 \times (-3) = -6\) and whose sum is \(-1\) (the coefficient of y).
The numbers are \(-3\) and \(2\), since \((-3) \times 2 = -6\) and \(-3 + 2 = -1\).
Rewrite the middle term using these numbers:
\( 2y^2 - 3y + 2y - 3 \)
Factor by grouping:
\( y(2y - 3) + 1(2y - 3) \)
\( (2y - 3)(y + 1) \)
Now substitute back \(y = \cot\theta\):
\( (2\cot\theta - 3)(\cot\theta + 1) \)
This matches option (a).
Alternatively, expand the options:
% Option
(a) \((2\cot\theta - 3)(\cot\theta + 1) = 2\cot^2\theta + 2\cot\theta - 3\cot\theta - 3 = 2\cot^2\theta - \cot\theta - 3\). (Matches)
% Option
(b) \((2\cot\theta - 1)(\cot\theta + 3) = 2\cot^2\theta + 6\cot\theta - \cot\theta - 3 = 2\cot^2\theta + 5\cot\theta - 3\). (No)
% Option
(c) \((2\cot\theta + 3)(\cot\theta - 1) = 2\cot^2\theta - 2\cot\theta + 3\cot\theta - 3 = 2\cot^2\theta + \cot\theta - 3\). (No)
% Option
(d) \((2\cot\theta + 1)(\cot\theta - 3) = 2\cot^2\theta - 6\cot\theta + \cot\theta - 3 = 2\cot^2\theta - 5\cot\theta - 3\). (No)
\[ \boxed{(2\cot\theta - 3)(\cot\theta + 1)} \]