Since the moles of water are greater than the moles of \( \text{CH}_3\text{COOH} \), water acts as the solvent. The freezing point depression is calculated as:
\[T_f^0 - (T_f)_s = K_f \times m\]
Calculating the molality \( m \):
\[m = \frac{\text{moles of solute}}{\text{kg of solvent}} = \frac{2700/60}{2700/1000} = 1 \, \text{mol kg}^{-1}\]
Applying the freezing point depression formula:
\[0 - (T_f)_s = 1.86 \times 1\]
\[(T_f)_s = -1.86 \approx -31^\circ \text{C}\]
A substance 'X' (1.5 g) dissolved in 150 g of a solvent 'Y' (molar mass = 300 g mol$^{-1}$) led to an elevation of the boiling point by 0.5 K. The relative lowering in the vapour pressure of the solvent 'Y' is $____________ \(\times 10^{-2}\). (nearest integer)
[Given : $K_{b}$ of the solvent = 5.0 K kg mol$^{-1}$]
Assume the solution to be dilute and no association or dissociation of X takes place in solution.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.