Determine the Molality of the Solution:
The boiling point elevation \( \Delta T_b \) is related to molality (\( m \)) as follows: \[ \Delta T_b = K_b \times m \]
Given:
\[ \Delta T_b = 2^\circ C, \quad K_b = 0.52 \, \text{K kg mol}^{-1} \] \[ m = \frac{\Delta T_b}{K_b} = \frac{2}{0.52} \approx 3.85 \, \text{mol kg}^{-1} \]
Calculate the Moles of Solute:
Since molality \( m \) is defined as moles of solute per kilogram of solvent: \[ \text{moles of solute} = m \times \text{mass of solvent (in kg)} \] Given that the mass of solvent (water) is 100 g or 0.1 kg: \[ \text{moles of solute} = 3.85 \times 0.1 = 0.385 \, \text{moles} \]
Determine the Molar Mass of the Solute:
Given mass of solute = 2.5 g, \[ \text{Molar mass of solute} = \frac{\text{mass of solute}}{\text{moles of solute}} = \frac{2.5}{0.385} \approx 6.49 \, \text{g/mol} \]
Calculate the Vapour Pressure Lowering:
The vapour pressure lowering \( \Delta P \) is given by: \[ \Delta P = P^0 \times \frac{\text{moles of solute}}{\text{moles of solvent}} \] where \( P^0 = 760 \, \text{mm Hg} \) and moles of solvent (water) = \[ \frac{100}{18} \approx 5.56 \, \text{moles}. \]
Calculate \( \Delta P \):
\[ \Delta P = 760 \times \frac{0.385}{5.56} \approx 52.61 \, \text{mm Hg} \]
Calculate the Vapour Pressure of the Solution:
\[ P_{\text{solution}} = P^0 - \Delta P = 760 - 52.61 \approx 707 \, \text{mm Hg} \]
Conclusion:
The vapour pressure of the resulting aqueous solution is approximately \( 707 \, \text{mm Hg} \).
According to the generally accepted definition of the ideal solution there are equal interaction forces acting between molecules belonging to the same or different species. (This is equivalent to the statement that the activity of the components equals the concentration.) Strictly speaking, this concept is valid in ecological systems (isotopic mixtures of an element, hydrocarbons mixtures, etc.). It is still usual to talk about ideal solutions as limiting cases in reality since very dilute solutions behave ideally with respect to the solvent. This law is further supported by the fact that Raoult’s law empirically found for describing the behaviour of the solvent in dilute solutions can be deduced thermodynamically via the assumption of ideal behaviour of the solvent.
Answer the following questions:
(a) Give one example of miscible liquid pair which shows negative deviation from Raoult’s law. What is the reason for such deviation?
(b) (i) State Raoult’s law for a solution containing volatile components.
OR
(ii) Raoult’s law is a special case of Henry’s law. Comment.
(c) Write two characteristics of an ideal solution.
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to: