Determine the Molality of the Solution:
The boiling point elevation \( \Delta T_b \) is related to molality (\( m \)) as follows: \[ \Delta T_b = K_b \times m \]
Given:
\[ \Delta T_b = 2^\circ C, \quad K_b = 0.52 \, \text{K kg mol}^{-1} \] \[ m = \frac{\Delta T_b}{K_b} = \frac{2}{0.52} \approx 3.85 \, \text{mol kg}^{-1} \]
Calculate the Moles of Solute:
Since molality \( m \) is defined as moles of solute per kilogram of solvent: \[ \text{moles of solute} = m \times \text{mass of solvent (in kg)} \] Given that the mass of solvent (water) is 100 g or 0.1 kg: \[ \text{moles of solute} = 3.85 \times 0.1 = 0.385 \, \text{moles} \]
Determine the Molar Mass of the Solute:
Given mass of solute = 2.5 g, \[ \text{Molar mass of solute} = \frac{\text{mass of solute}}{\text{moles of solute}} = \frac{2.5}{0.385} \approx 6.49 \, \text{g/mol} \]
Calculate the Vapour Pressure Lowering:
The vapour pressure lowering \( \Delta P \) is given by: \[ \Delta P = P^0 \times \frac{\text{moles of solute}}{\text{moles of solvent}} \] where \( P^0 = 760 \, \text{mm Hg} \) and moles of solvent (water) = \[ \frac{100}{18} \approx 5.56 \, \text{moles}. \]
Calculate \( \Delta P \):
\[ \Delta P = 760 \times \frac{0.385}{5.56} \approx 52.61 \, \text{mm Hg} \]
Calculate the Vapour Pressure of the Solution:
\[ P_{\text{solution}} = P^0 - \Delta P = 760 - 52.61 \approx 707 \, \text{mm Hg} \]
Conclusion:
The vapour pressure of the resulting aqueous solution is approximately \( 707 \, \text{mm Hg} \).
Match List I with List II:
Choose the correct answer from the options given below:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.