Determine the Molality of the Solution:
The boiling point elevation \( \Delta T_b \) is related to molality (\( m \)) as follows: \[ \Delta T_b = K_b \times m \]
Given:
\[ \Delta T_b = 2^\circ C, \quad K_b = 0.52 \, \text{K kg mol}^{-1} \] \[ m = \frac{\Delta T_b}{K_b} = \frac{2}{0.52} \approx 3.85 \, \text{mol kg}^{-1} \]
Calculate the Moles of Solute:
Since molality \( m \) is defined as moles of solute per kilogram of solvent: \[ \text{moles of solute} = m \times \text{mass of solvent (in kg)} \] Given that the mass of solvent (water) is 100 g or 0.1 kg: \[ \text{moles of solute} = 3.85 \times 0.1 = 0.385 \, \text{moles} \]
Determine the Molar Mass of the Solute:
Given mass of solute = 2.5 g, \[ \text{Molar mass of solute} = \frac{\text{mass of solute}}{\text{moles of solute}} = \frac{2.5}{0.385} \approx 6.49 \, \text{g/mol} \]
Calculate the Vapour Pressure Lowering:
The vapour pressure lowering \( \Delta P \) is given by: \[ \Delta P = P^0 \times \frac{\text{moles of solute}}{\text{moles of solvent}} \] where \( P^0 = 760 \, \text{mm Hg} \) and moles of solvent (water) = \[ \frac{100}{18} \approx 5.56 \, \text{moles}. \]
Calculate \( \Delta P \):
\[ \Delta P = 760 \times \frac{0.385}{5.56} \approx 52.61 \, \text{mm Hg} \]
Calculate the Vapour Pressure of the Solution:
\[ P_{\text{solution}} = P^0 - \Delta P = 760 - 52.61 \approx 707 \, \text{mm Hg} \]
Conclusion:
The vapour pressure of the resulting aqueous solution is approximately \( 707 \, \text{mm Hg} \).
A substance 'X' (1.5 g) dissolved in 150 g of a solvent 'Y' (molar mass = 300 g mol$^{-1}$) led to an elevation of the boiling point by 0.5 K. The relative lowering in the vapour pressure of the solvent 'Y' is $____________ \(\times 10^{-2}\). (nearest integer)
[Given : $K_{b}$ of the solvent = 5.0 K kg mol$^{-1}$]
Assume the solution to be dilute and no association or dissociation of X takes place in solution.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.