\(\frac{2×4×8×16}{(log_24)^2(log_48)^3(log_816)^4}\) equals
We are given:
\(\log_2 4 = 2,\quad \log_4 8 = \frac{3}{2},\quad \log_8 16 = \frac{4}{3}\)
We have to evaluate:
\[\frac{2 \times 4 \times 8 \times 16}{(\log_2 4)^2 (\log_4 8)^3 (\log_8 16)^4}\]Now substitute the given values:
\[= \frac{2 \times 4 \times 8 \times 16}{(2)^2 \times \left(\frac{3}{2}\right)^3 \times \left(\frac{4}{3}\right)^4}\]Calculate the numerator:
\[2 \times 4 \times 8 \times 16 = (2^1)(2^2)(2^3)(2^4) = 2^{1+2+3+4} = 2^{10} = 1024\]Now compute the denominator step-by-step:
So, the denominator becomes:
\[4 \times \frac{27}{8} \times \frac{256}{81}\]Multiply:
\[= \frac{4 \times 27 \times 256}{8 \times 81}\]Simplify numerator and denominator:
Now compute final expression:
\[\frac{1024}{42.666\ldots} = 24\]Final Answer: \(\boxed{24}\)
We are given:
$ \log_2 4 = 2,\quad \log_4 8 = \frac{3}{2},\quad \log_8 16 = \frac{4}{3} $
We need to evaluate: $$ \frac{2 \times 4 \times 8 \times 16}{(\log_2 4)^2 \cdot (\log_4 8)^3 \cdot (\log_8 16)^4} $$
Substitute the values into the expression: $$ = \frac{2 \times 4 \times 8 \times 16} {2^2 \cdot \left( \frac{3}{2} \right)^3 \cdot \left( \frac{4}{3} \right)^4} $$
Simplify the denominator step-by-step:
$2^2 = 4$
$\left( \frac{3}{2} \right)^3 = \frac{27}{8}$
$\left( \frac{4}{3} \right)^4 = \frac{256}{81}$
Now compute the entire denominator: $$ 4 \cdot \frac{27}{8} \cdot \frac{256}{81} = \frac{4 \cdot 27 \cdot 256}{8 \cdot 81} $$
Simplify numerator:
$2 \times 4 \times 8 \times 16 = 1024$
So the expression becomes: $$ \frac{1024}{\frac{4 \cdot 27 \cdot 256}{8 \cdot 81}} = \frac{1024 \cdot 8 \cdot 81}{4 \cdot 27 \cdot 256} $$
Cancel common factors and simplify:
$1024 = 256 \cdot 4$
$\Rightarrow$ numerator: $256 \cdot 4 \cdot 8 \cdot 81$
denominator: $4 \cdot 27 \cdot 256$
Cancel 256 and 4: $$ \frac{8 \cdot 81}{27} = \frac{648}{27} = 24 $$
Final Answer: $24$
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :
When $10^{100}$ is divided by 7, the remainder is ?