\(\int_{-π/2}^{π/2} f(x) \,dx\) =?
Where f(x) = sin |x| + cos |x|, x ∈ \((-\frac {π}{2}, \frac {π}{2})\)
We have f(x) = sin|x| + cos|x|
Then, f(x) =f(–x) Since, (f(x) is an even function.
I = \(\int_{-π/2}^{π/2}sin|x| + cos|x| \,dx\)
I = 2 \(\int_{0}^{π/2}sin|x| + cos|x| \,dx\)
I = 2[-cosx + sinx]π/20
I = 2[-cos \(\frac {π}{2}\) + sin \(\frac {π}{2}\) + cos 0 - sin 0]
I = 2[0 + 1 + 1–0]
I = 2x2
I = 4
Therefore, the correct option is (C) 4
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]