Question:

\(\int_{-π/2}^{π/2} f(x) \,dx\) =?
Where f(x) = sin |x| + cos |x|, x ∈ \((-\frac {π}{2}, \frac {π}{2})\)

Updated On: Jun 23, 2024
  • 0
  • 2
  • 4
  • 8
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

We have f(x) = sin|x| + cos|x|
Then, f(x) =f(–x) Since, (f(x) is an even function.
I = \(\int_{-π/2}^{π/2}sin|x| + cos|x| \,dx\)
I = 2 \(\int_{0}^{π/2}sin|x| + cos|x| \,dx\)
I = 2[-cosx + sinx]π/20 
I = 2[-cos \(\frac {π}{2}\) + sin \(\frac {π}{2}\) + cos 0 - sin 0] 
I = 2[0 + 1 + 1–0] 
I = 2x2
I = 4
Therefore, the correct option is (C) 4

Was this answer helpful?
2
0