Let \(\frac {2}{(1-x)(1+x^2)}\) \(=\) \(\frac {A}{(1-x)}+\frac {Bx+C}{(1+x^2)}\)
\(2 = A(1+x^2)+(Bx+C)(1-x)\)
\(2 = A+Ax^2+Bx-Bx+C-Cx\)
Equating the coefficient of x2, x, and constant term, we obtain
\(A − B = 0\)
\(B − C = 0\)
\(A + C = 2\)
On solving these equations, we obtain
\(A = 1, \ B = 1, \ and \ C = 1\)
∴ \(\frac {2}{(1-x)(1+x^2)}\) = \(\frac {1}{1-x}\) + \(\frac {x+1}{1+x^2}\)
⇒ \(∫\)\(\frac {2}{(1-x)(1+x^2)}\) = \(∫\)\(\frac {1}{1-x}\ dx\)+ \(∫\)\(\frac {x}{1+x^2}\ dx\) + \(∫\)\(\frac {1}{1+x^2}\ dx\)
= - \(∫\)\(\frac {1}{1-x}\ dx\) + \(\frac 12\)\(∫\)\(\frac {2x}{1+x^2}\ dx\) + \(∫\)\(\frac {1}{1+x^2}\ dx\)
= -\(log\ |x-1|+\frac 12log|1+x^2|+tan^{-1}x+C\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]

The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,
