Given:
\[ 10 \, \text{MSD} = 11 \, \text{VSD} \]
1 VSD (Vernier Scale Division) is equivalent to:
\[ 1 \, \text{VSD} = \frac{10}{11} \, \text{MSD} \]
The least count (LC) of the Vernier caliper is given by:
\[ LC = 1 \, \text{MSD} - 1 \, \text{VSD} \]
Substituting the values:
\[ LC = 1 \, \text{MSD} - \frac{10}{11} \, \text{MSD} = \frac{1}{11} \, \text{MSD} \]
Given that 1 MSD corresponds to 5 units:
\[ LC = \frac{5 \, \text{units}}{11} \]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: