Given:
\[ 10 \, \text{MSD} = 11 \, \text{VSD} \]
1 VSD (Vernier Scale Division) is equivalent to:
\[ 1 \, \text{VSD} = \frac{10}{11} \, \text{MSD} \]
The least count (LC) of the Vernier caliper is given by:
\[ LC = 1 \, \text{MSD} - 1 \, \text{VSD} \]
Substituting the values:
\[ LC = 1 \, \text{MSD} - \frac{10}{11} \, \text{MSD} = \frac{1}{11} \, \text{MSD} \]
Given that 1 MSD corresponds to 5 units:
\[ LC = \frac{5 \, \text{units}}{11} \]
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :
Consider the following sequence of reactions to produce major product (A):
The molar mass of the product (A) is g mol−1. (Given molar mass in g mol−1 of C: 12,
H: 1, O: 16, Br: 80, N: 14, P: 31)
During "S" estimation, 160 mg of an organic compound gives 466 mg of barium sulphate. The percentage of Sulphur in the given compound is %.
(Given molar mass in g mol\(^{-1}\) of Ba: 137, S: 32, O: 16)
If \(\int e^x \left( \frac{x \sin^{-1} x}{\sqrt{1-x^2}} + \frac{\sin^{-1} x}{(1-x^2)^{3/2}} + \frac{x}{1-x^2} \right) dx = g(x) + C\), where C is the constant of integration, then \(g\left( \frac{1}{2} \right)\)equals:
If 1 mM solution of ethylamine produces pH = 9, then the ionization constant (\(K_b\)) of ethylamine is \(10^{-x}\).
The value of x is (nearest integer).
The degree of ionization of ethylamine can be neglected with respect to unity.
Which among the following react with Hinsberg's reagent?
Choose the correct answer from the options given below: