\(\frac {1}{x^4-1}\) = \(\frac {1}{(x^2-1)(x^2+1)}\)= \(\frac {1}{(x+1)(x-1)(1+x^2)}\)
Let \(\frac {1}{(x+1)(x-1)(1+x^2)}\) = \(\frac {A}{(x+1)}+\frac {B}{(x-1)}+\frac {Cx+D}{(x^2+1)}\)
\(1 = A(x-1)(x^2+1)+B(x+1)(x^2+1)+(Cx+D)(x^2-1)\)
\(1 = A(x^3+x-x^2-1)+B(x^3+x+x^2+1)+Cx^3+Dx^2-Cx-D\)
\(1 = (A+B+C)x^3+(-A+B+D)x^2+(A+B-C)x+(-A+B-D)\)
\(Equating \ the\ coefficient\ of\ x^3 , x^2 , x, and \ constant \ term, \ we \ obtain\)
\(A+B+C = 0\)
\(-A+B+D = 0\)
\(A+B-C = 0\)
\(-A+B-D = 1\)
\(On\ solving\ these\ equations, \ we \ obtain\)
\(A=-\frac 14, \ B=\frac 14,\ C=0,and \ D=-\frac 12\)
∴ \(\frac {1}{x^4-1}\)\(=-\frac 14(x+1)+\frac 14(x-1)-\frac 12(x^2+1)\)
⇒ \(∫\)\(\frac {1}{x^4-1}\ dx\) = \(-\frac 14\ log|x-1|+\frac 14log\ |x-1|-\frac 12\ tan^{-1}x+C\)
\(=\frac 14\ log|\frac {x-1}{x+1}|-\frac 12tan^{-1} x+C\)
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
The value of : \( \int \frac{x + 1}{x(1 + xe^x)} dx \).
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,