\(\frac {1}{x(x^4-1)}\)
Multiplying numerator and denominator by x3 , we obtain
\(\frac {1}{x(x^4-1)}\) = \(\frac {x^3}{x^4(x^4-1)}\)
∴ \(∫\)\(\frac {1}{x(x^4-1)}dx\) = \(∫\)\(\frac {x^3}{x^4(x^4-1)}dx\)
Let x4 = t ⇒ 4x3dx = dt
∴ \(∫\)\(\frac {1}{x(x^4-1)}dx\) = \(\frac 14∫\frac {dt}{t(t-1)}\)
Let \(\frac {1}{t(t-1)}\) = \(\frac At+\frac {B}{(t-1)}\)
\(1 = A(t-1) + Bt \) ...(1)
Substituting t = 0 and 1 in (1), we obtain
\(A = -1\ and \ B = 1\)
⇒ \(\frac {1}{t(t-1)}\) = \(\frac {-1}{t}+\frac {1}{t-1}\)
⇒ \(∫\)\(\frac {1}{x(x^4-1)}dx\) = \(\frac 14\) \(∫\)\(\frac {-1}{t}+\frac {1}{t-1}dt\)
= \(\frac 14[-log|t|+log|t-1|]+C\)
= \(\frac 14log\ |\frac {t-1}{t}|+C\)
= \(\frac 14log|\frac {x^4-1}{x^4}|+C\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,
