It can be seen that the given integrand is not a proper fraction.
Therefore, on dividing (1 − x2) by x(1 − 2x), we obtain
\(\frac{1-x^2}{x(1-2x)} = \frac{1}{2}+\frac{1}{2}\bigg(\frac{2-x)}{x(1-2x)}\bigg)\)
Let \(\frac{2-x}{(1-2x)} = \frac{A}{x}+\frac{B}{(1-2x)}\)
\(\Rightarrow\) (2-x) = A(1-2x)+Bx ...(1)
Substituting x = 0 and \(\frac{1}{2}\) in equation (1), we obtain
A = 2 and B = 3
∴ \(\frac{2-x}{x(1-2x)}=\frac{2}{x}+\frac{3}{1-2x}\)
Substituting in equation (1), we obtain
\(\frac{1-x^2}{x(1-2x)} = \frac{1}{2}+\frac{1}{2}\bigg\{\frac{2}{x}+\frac{3}{1-2x)}\bigg\}\)
\(\Rightarrow\int\frac{1-x^2}{x(1-2x)}dx = \int\bigg\{\frac{1}{2}+\frac{1}{2}\bigg(\frac{2}{x}+\frac{3}{1-2x)}\bigg)\bigg\}dx\)
=\(\frac{x}{2}+\log|x|+\frac{3}{2(-2)}\log|1-2x|+C\)
=\(\frac{x}{2}+\log|x|+\frac{3}{4}\log|1-2x|+C\)
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,