Step 1: Complete the square in the denominator: \[ x^2 - 2x + 2 = (x^2 - 2x + 1) + 1 = (x-1)^2 + 1 \]
Step 2: Rewrite the integral: \[ \int \frac{1}{(x-1)^2 + 1} dx \]
Step 3: Recognize the standard integral form: \[ \int \frac{1}{u^2 + a^2} du = \frac{1}{a} \tan^{-1}\left(\frac{u}{a}\right) + C \] Here, \( u = x-1 \) and \( a = 1 \).
Step 4: Apply the formula: \[ \int \frac{1}{(x-1)^2 + 1} dx = \tan^{-1}(x-1) + C \]
Conclusion: The correct answer is \(\boxed{A}\) (\(\tan^{-1}(x-1) + C\)).
\[ \int \frac{1}{x^2 - 2x + 2} \, dx \]
We need to find the integral of the given function.
The denominator \( x^2 - 2x + 2 \) is a quadratic expression that can be rewritten as a perfect square.
Step 1: Complete the square for the denominator
The quadratic expression is \( x^2 - 2x + 2 \). To complete the square:
\[ x^2 - 2x + 2 = (x - 1)^2 + 1 \]
So, the integral becomes:
\[ \int \frac{1}{(x - 1)^2 + 1} \, dx \]
Step 2: Use a standard integral formula
The standard integral formula for the expression \( \int \frac{1}{x^2 + a^2} \, dx \) is:
\[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \]
In our case, \( a = 1 \), and the integral becomes:
\[ \int \frac{1}{(x - 1)^2 + 1} \, dx = \tan^{-1}(x - 1) + C \]
Final Answer:
The correct option is:
\[ \boxed{\text{(A) } \tan^{-1}(x - 1) + C} \]
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.