\(Let \ I = ∫\frac {1}{1-tan \ x } dx\)
\(I= ∫\frac {1}{1-\frac {sin\ x}{cos \ x }}dx\)
\(I= ∫\frac {cos\ x}{cos \ x - sin\ x} dx\)
\(I= \frac 12 ∫\frac {2cos\ x}{cos\ x - sin\ x} dx\)
\(I= \frac 12 ∫\frac {(cos \ x-sin\ x)+(cos\ x+sin \ x)}{(cos \ x-sin\ x) }dx\)
\(I= \frac 12 ∫1dx+\frac 12 ∫\frac {cos \ x+sin\ x}{cos\ x-sin\ x} dx\)
\(I= \frac x2+\frac 12 ∫\frac {cos \ x+sin\ x}{cos\ x-sin\ x} dx\)
\(Put \ cos\ x - sin\ x = t ⇒ (-sin\ x - cos \ x) dx = dt\)
\(∴ I = \frac x2+\frac 12 ∫\frac {-(dt)}{t}\)
\(I= \frac x2-\frac 12 log\ |t|+C\)
\(I= \frac x2-\frac 12 log\ |cos\ x-sin\ x|+C\)
What is the Planning Process?
Given below is the list of the different methods of integration that are useful in simplifying integration problems:
If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:
∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C
Here f(x) is the first function and g(x) is the second function.
The formula to integrate rational functions of the form f(x)/g(x) is:
∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx
where
f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and
g(x) = q(x).s(x)
Hence the formula for integration using the substitution method becomes:
∫g(f(x)) dx = ∫g(u)/h(u) du
This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,
∫g'(f(x)) f'(x) dx = g(f(x)) + C