\(Let\ I = ∫\frac {1}{1+cot \ x} dx\)
\(I = ∫\frac {1}{1+\frac {cos\ x}{sin \ x}} dx\)
\(I = ∫\frac {sin\ x}{sin\ x + cos \ x}\ dx\)
\(I = \frac 12∫\frac {2sin\ x}{sin\ x + cos \ x}\ dx\)
\(I = \frac 12 ∫\frac {(sin \ x + cos \ x)+(sin\ x - cos\ x)}{(sin \ x + cos \ x)}dx\)
\(I = \frac 12∫1dx+\frac 12∫\frac {sin\ x - cos\ x}{/sin\ x + cos\ x} dx\)
\(I = \frac 12(x)+\frac 12∫\frac {sin\ x - cos\ x}{/sin\ x + cos\ x} dx\)
\(Let\ sin \ x + cos\ x = t ⇒ (cos \ x- sin\ x) dx = dt\)
\(∴ I = \frac x2+\frac 12 ∫\frac {-(dt)}{t}\)
\(I = \frac x2-\frac 12\ log \ |t|+ C\)
\(I = \frac x2-\frac 12\ log \ |sin \ x + cos\ x|+ C\)
What is the Planning Process?
Given below is the list of the different methods of integration that are useful in simplifying integration problems:
If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:
∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C
Here f(x) is the first function and g(x) is the second function.
The formula to integrate rational functions of the form f(x)/g(x) is:
∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx
where
f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and
g(x) = q(x).s(x)
Hence the formula for integration using the substitution method becomes:
∫g(f(x)) dx = ∫g(u)/h(u) du
This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,
∫g'(f(x)) f'(x) dx = g(f(x)) + C