Question:

Integrate the function: \(\frac {1}{1+cot \ x}\)

Updated On: Oct 19, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(Let\  I = ∫\frac {1}{1+cot \ x} dx\)

 \(I = ∫\frac {1}{1+\frac {cos\ x}{sin \ x}} dx\)

\(I = ∫\frac {sin\ x}{sin\ x + cos \ x}\  dx\)

\(I = \frac 12∫\frac {2sin\ x}{sin\ x + cos \ x}\  dx\)

\(I = \frac 12 ∫\frac {(sin \ x + cos \ x)+(sin\ x - cos\  x)}{(sin \ x + cos \ x)}dx\)

\(I = \frac 12∫1dx+\frac 12∫\frac {sin\ x - cos\  x}{/sin\  x + cos\  x} dx\)

\(I = \frac 12(x)+\frac 12∫\frac {sin\ x - cos\  x}{/sin\  x + cos\  x} dx\)

\(Let\  sin \ x + cos\  x = t ⇒ (cos \ x- sin\  x) dx = dt\)

\(∴ I = \frac x2+\frac 12 ∫\frac {-(dt)}{t}\)

\(I = \frac x2-\frac 12\ log \ |t|+ C\)

\(I = \frac x2-\frac 12\ log \ |sin \ x + cos\ x|+ C\)

Was this answer helpful?
0
0

Concepts Used:

Methods of Integration

Given below is the list of the different methods of integration that are useful in simplifying integration problems:

Integration by Parts:

 If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:

∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C

Here f(x) is the first function and g(x) is the second function.

Method of Integration Using Partial Fractions:

The formula to integrate rational functions of the form f(x)/g(x) is:

∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx

where

f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and

g(x) = q(x).s(x)

Integration by Substitution Method

Hence the formula for integration using the substitution method becomes:

∫g(f(x)) dx = ∫g(u)/h(u) du

Integration by Decomposition

Reverse Chain Rule

This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,

∫g'(f(x)) f'(x) dx = g(f(x)) + C

Integration Using Trigonometric Identities