Let I=\(∫_0^π log(1+cosx)dx....(1)\)
\(⇒I=∫_0^π log(1+cos(π-x))dx ......... (∫_0^aƒ(x)dx=∫_0^aƒ(a-x)dx)\)
\(I=∫_0^π log(1+cosx)dx....(2)\)
\(Adding(1)and(2),we obtain\)
\(2I=∫_0^π {log(1+cosx)+log(1-cosx)}dx\)
\(⇒2I=∫_0^π log(1-cos^2x)dx\)
\(⇒2I=∫_0^π logsin^2xdx\)
\(⇒2I=2∫_0^π logsinxdx\)
\(⇒I=∫_0^π logsinxdx...(3)\)
\(sin(π-x)=sinx\)
\(∴I=2∫_0^\frac{π}{2}logsinxdx...(4)\)
\(⇒I=2∫_0^\frac{π}{2} logsin(\frac{π}{2}-x)dx=2∫_0\frac{π}{2}logcosxdx...(5)\)
\(Adding(4)and(5),we obtain\)
\(2I=2∫_0^\frac{π}{2}(logsinx+logcosx)dx\)
\(⇒I=∫_0^\frac{π}{2}(logsinx+logcosx+log2-log2)dx\)
\(⇒I=∫_0^\frac{π}{2}(log2sinxcosx-log2)dx\)
\(⇒I=∫_0^\frac{π}{2}logsin2xdx-∫_0\frac{π}{2}log2dx\)
\(Let 2x=t 2dx=dt\)
\(When x=0,t=0 and when x=\frac{π}{2},π=\)
\(∴I=\frac{1π}{2}∫_0^π0logsintdt-\frac{}{2}log2\)
\(⇒I=\frac{1πI}{2}-\frac{}{2}log2\)
\(⇒\frac{I}{2}=-\frac{π}{2}log2\)
\(⇒I=-πlog2\)
A compound (A) with molecular formula $C_4H_9I$ which is a primary alkyl halide, reacts with alcoholic KOH to give compound (B). Compound (B) reacts with HI to give (C) which is an isomer of (A). When (A) reacts with Na metal in the presence of dry ether, it gives a compound (D), C8H18, which is different from the compound formed when n-butyl iodide reacts with sodium. Write the structures of A, (B), (C) and (D) when (A) reacts with alcoholic KOH.
Definite integral is an operation on functions which approximates the sum of the values (of the function) weighted by the length (or measure) of the intervals for which the function takes that value.
Definite integrals - Important Formulae Handbook
A real valued function being evaluated (integrated) over the closed interval [a, b] is written as :
\(\int_{a}^{b}f(x)dx\)
Definite integrals have a lot of applications. Its main application is that it is used to find out the area under the curve of a function, as shown below: