For isotonic solution: \[ i(\text{glucose}) = i(\text{K}_2\text{SO}_4) \] \[ 0.01 = i(\text{K}_2\text{SO}_4) \times 0.004 \] \[ i(\text{K}_2\text{SO}_4) = \frac{0.01}{0.004} = 2.5 \] Now, for \( K_2SO_4 \): \[ i = 1 + (n-1) \] \[ 2.5 = 1 + (n-1) \] \[ n = 3 \text{ for } K_2SO_4 \] Percentage dissociation: \[ \alpha = \frac{3}{2} = 75\% \] Thus, the percentage dissociation of K_2SO_4 is 75%.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: