For inside points $(r \le R) $
$E = 0\, \, \Rightarrow\, \, V =constant = \frac{1}{4 \pi\varepsilon_0} \frac{q}{R}$
For inside points $(r \ge R) $
$\hspace18mm E = \frac{1}{4 \pi\varepsilon_0}.\frac{q}{r^2}$ or $E \propto \frac{1}{r^2}$
and $\hspace10mm V = \frac{1}{4 \pi\varepsilon_0}\frac{q}{r}$ or $V \propto \frac{1}{r}$
On the surface (r = R)
$\hspace20mm V = \frac{1}{4 \pi\varepsilon_0}\frac{q}{R}$
$\Rightarrow\hspace15mm E = \frac{1}{4 \pi\varepsilon_0}.\frac{q}{R^2}=\frac{\sigma}{\varepsilon_0}$
where, $ \sigma = \frac{q}{4 \pi R^2}=$ surface charge density corresponding to above equations the correct graphs are shown in option (d).