Given LP:
Max \(z = 20x_1 + 6x_2 + Px_3\), subject to:
\(8x_1 + 2x_2 + 3x_3 \le 250\),
\(4x_1 + 3x_2 \le 150\),
\(2x_1 + x_3 \le 50\),
\(x_1,x_2,x_3 \ge 0.\)
Optimal solution: \(x_1^*=0,\;x_2^*=50,\;x_3^*=50.\)
Optimal dual variables: \(y_1^*=0,\;y_2^*=2,\;y_3^*=8.\)
Find the value of parameter \(P\) such that the solution remains optimal (round off to one decimal place).