>
Mathematics
List of top Mathematics Questions
The area of the parallelogram whose adjacent sides are
$\hat{i}+ \hat {k} $
and
$2\hat {i}+\hat {j}+\hat {k}$
is
KCET - 2014
KCET
Mathematics
Product of Two Vectors
Area of the region bounded by two parabolas
$y\, =\, x^2$
and
$x \,= \, y^2 $
is
KCET - 2014
KCET
Mathematics
applications of integrals
If
$a, b$
and
$c$
are in A.P., then the value of
$\begin{vmatrix} {x+2}&{x+3} &{x+a}\\ {x+4}&{x+5}& {x+b} \\ {x+6}&{x+7} &{x+c}\\ \end{vmatrix}$
is
KCET - 2014
KCET
Mathematics
Determinants
How many
$5$
digit telephone numbers can be constructed using the digits
$0$
to
$9$
, if each number starts with
$67$
and no digit appears more than once ?
KCET - 2014
KCET
Mathematics
permutations and combinations
The order and degree of the differential equation
$y=x\frac{dy}{dx}+\frac{2}{\frac{dy}{dx}}$
is
KCET - 2014
KCET
Mathematics
Order and Degree of Differential Equation
The value of
$\sin (2\, \sin^{-1}\, 0.8)$
is equal to
KCET - 2014
KCET
Mathematics
Inverse Trigonometric Functions
The value of the integral
$\int_\limits{-\pi/4}^{\pi/4} \log (\sec \theta-\tan \theta) d \theta$
is
KCET - 2014
KCET
Mathematics
Some Properties of Definite Integrals
A stone is dropped into a quiet lake and waves move in circles at the speed of
$5\, cm/sec$
. At that instant, when the radius of circular wave is
$8 \,cm$
, how fast is the enclosed area increasing ?
KCET - 2014
KCET
Mathematics
Application of derivatives
The standard deviation of
$9, 16, 23, 30, 37, 44, 51$
is
KEAM - 2014
KEAM
Mathematics
Variance and Standard Deviation
If
$A$
is
$3 \times 4$
matrix and
$B$
is a matrix such that
$A'B$
and
$BA'$
are both defined. Then
$B$
is of the type
KCET - 2014
KCET
Mathematics
Matrices
The angle between two diagonals of a cube is
KCET - 2014
KCET
Mathematics
Three Dimensional Geometry
In a triangle
$ABC, a[b \,cos \,C - c\, cos\, B]$
=
KCET - 2014
KCET
Mathematics
Trigonometric Functions
The symmetric part of the matrix $A =\begin{bmatrix} {1}&{2} &{4}\\ {6}&{8}& {2} \\ {2}&{-2}&{7}\\ \end{bmatrix} $ is
KCET - 2014
KCET
Mathematics
Matrices
Let
$S$
denote the sum of the infinite series
$1+\frac{8}{2!}+\frac{21}{3!}+\frac{40}{4!}+\frac{65}{5!} ....... $
. Then
WBJEE - 2014
WBJEE
Mathematics
Sequence and series
The condition for the lines $l x+m y+n=0$ and $l_{1} x+m_{1} y+n_{1}=0$ to be conjugate with respect to the circle $x^{2}+y^{2}=r^{2}$, is
AP ECET - 2014
AP ECET
Mathematics
Straight lines
The slopes of the focal chords of the parabola $y^{2}=32 x$, which are tangents to the circle $x^{2}+y^{2}=4$, are
AP ECET - 2014
AP ECET
Mathematics
Straight lines
The point at which the circles $x^{2}+y^{2}-4 x-4 y+7=0 $ and $x^{2}+y^{2}-12 x -10 y+45=0$ touch each other, is
AP ECET - 2014
AP ECET
Mathematics
Straight lines
Coefficient of
$ x^{11}$
in the expansion of
$(1 + x^2)^4 (1 + x^3)^7 (1 + x^4)^{12} $
JEE Advanced - 2014
JEE Advanced
Mathematics
Binomial theorem
If
$f\left(x\right) = \frac{2x -3}{3x+4} $
then
$f^{-1} \left(\frac{-4}{3}\right) = $
COMEDK UGET - 2014
COMEDK UGET
Mathematics
Relations and functions
If
$ x, y $
and
$ z $
are all different and
$ \begin{vmatrix}x&x^{2}&1+x^{3}\\ y&y^{2}&1+y^{3}\\ z&z^{2}&1+z^{3}\end{vmatrix}=0 $
then
AMUEEE - 2014
AMUEEE
Mathematics
Determinants
Let the straight line
$ x = b $
divide the area enclosed by
$ y = (1 - x)^2 $
,
$ y = 0 $
and
$ x = 0 $
into two parts
$ R_1(0 \le x \le b) $
and
$ R_2(b \le x \le 1) $
such that
$ R_1-R_2 = \frac {1}{4}. $
Then,
$b$
equals
AMUEEE - 2014
AMUEEE
Mathematics
applications of integrals
If
\(\alpha, \beta\)
are the roots of the quadratic equation
\(x^2 + px + q = 0\)
, then the values of
\(\alpha^{3}, \beta^{3}\)
and
\(\alpha^{4}+\alpha^{2}\beta^{3}+\beta^{4}\)
are respectively
WBJEE - 2014
WBJEE
Mathematics
Complex Numbers and Quadratic Equations
If
$ \alpha,\beta $
are the roots of the equation
$ ax^2+bx+c = 0 $
and
$ S_n = \alpha^n + \beta^n, $
then a
$ S_{n+1} + bS_{n} + cS_{n-1} $
is equal to
AMUEEE - 2014
AMUEEE
Mathematics
Complex Numbers and Quadratic Equations
Let,
$\vec {a} = - \hat {i} - \hat {k}, \vec {b} = - \hat {i} +\hat {j} $
and
$\vec {c} = \hat {i}+2\hat {j}+3\hat {k} $
be three given vectors. If
$\vec {r} $
is a vector such that
$ \vec {r} \times \vec {b} = \vec {c} \times \vec{b} $
and
$\vec {r} \cdot \vec{a} = 0 $
, then the value of
$\vec {r} \cdot \vec {b} $
is
AMUEEE - 2014
AMUEEE
Mathematics
Vector Algebra
If
$ \int_{0}^{\frac{\pi}{3}}\frac{cos x}{3 + 4 sin x}dx = k\, log \left(\frac{3+2\sqrt{3}}{3}\right) $
then
$k$
is
AMUEEE - 2014
AMUEEE
Mathematics
Integrals of Some Particular Functions
Prev
1
...
592
593
594
595
596
...
900
Next