>
Mathematics
List of top Mathematics Questions
If three-digit numbers
$ A28, 3B9 $
and
$ 62C $
, where
$ A, B $
and
$ C $
are integers between
$ 0 $
and
$ 9 $
, are divisible by a fixed integer
$ k $
, then the determinant
$ \begin{vmatrix}A&3&6\\ 8&9&C\\ 2&B&2\end{vmatrix} $
is
AMUEEE - 2014
AMUEEE
Mathematics
Determinants
If
$ A = \begin{bmatrix}2&3\\ 5&-2\end{bmatrix} $
be such that
$ A^{-1} = kA, $
then
$ k $
is equal to
AMUEEE - 2014
AMUEEE
Mathematics
Determinants
The existence of the unique solution of the system of equations $ x + y + z = \beta $ $ 5x - y + az = 10 $ $ 2x + 3y - z = 6 $ depends on
AMUEEE - 2014
AMUEEE
Mathematics
Determinants
If a normal chord at a point $t$ on the parabola $y^{2}=4 \,a \,x$ subtends a right angle at the vertex, then $t$ equals to
AP ECET - 2014
AP ECET
Mathematics
Straight lines
The solution of $\left(x+y\right)^{2} \left(x \frac{dy}{dx}+y\right)=xy \left(1 +\frac{dy}{dx}\right) $ is
COMEDK UGET - 2014
COMEDK UGET
Mathematics
integral
The length of the common chord of the two circles $x^{2}+y^{2}-4 y=0 $ and $x^{2}+y^{2}-8 x - 4 y+11=0$, is
AP ECET - 2014
AP ECET
Mathematics
Circle
A circle with centre at $(2,4)$ is such that the line $x+y+2=0$ cuts a chord of length $6$ . The radius of the circle is
AP ECET - 2014
AP ECET
Mathematics
Circle
The locus of the centre of the circle, which cuts the circle $x^{2}+y^{2}-20 x+4=0$ orthogonally and touches the line $x=2$, is
AP ECET - 2014
AP ECET
Mathematics
Straight lines
The area (in s units) of the triangle formed by the lines $x^{2}-3 x y+y^{2}=0$ and $x+y+1=0$, is
AP ECET - 2014
AP ECET
Mathematics
Straight lines
The shortest distance between the skew lines $\bar{r}=(i+2\bar{j}+3\bar{k})+t(i+3\bar{j}+2\bar{k}) $ and $\bar{r}=(4i+5\bar{j}+6\bar{k})+t(2i+3\bar{j}+\bar{k})$ is
AP ECET - 2014
AP ECET
Mathematics
Straight lines
If a line $l$ passes through $(k, 2 k),(3 k, 3 k)$ and $(3,1), k \neq 0$, then the distance from the origin to the line $l$ is
AP ECET - 2014
AP ECET
Mathematics
Straight lines
Set $ A $ and $ B $ have $ 3 $ and $ 6 $ elements respectively. What can be the minimum number of elements in $ A \cup B $ ?
AMUEEE - 2014
AMUEEE
Mathematics
Sets
$\int e^{x}\left(\cos x -\sin x\right)dx $
is equal to
COMEDK UGET - 2014
COMEDK UGET
Mathematics
integral
If
$y = \tan \: x $
then
$ \frac{d^2 y}{dx^2} $
=
COMEDK UGET - 2014
COMEDK UGET
Mathematics
Continuity and differentiability
If
$\vec{a}$
and
$\vec{b}$
are two vectors of magnitude
$2$
, each inclined at an angle
$60^\circ$
, then angle between
$\vec{a}$
and
$\vec{a} +\vec{b}$
is
COMEDK UGET - 2014
COMEDK UGET
Mathematics
Vector Algebra
If
$\sin(120 - A)= \sin(120 - B)$
and
$0< A, B < \pi $
then all values of
$A, B$
are given by.
COMEDK UGET - 2014
COMEDK UGET
Mathematics
Trigonometric Functions
Given that
$P(A) = 0.1, P(B | A) = 0.6$
and
$ P(B |A^c ) = 0.3$
what is
$P(A | B)$
?
COMEDK UGET - 2014
COMEDK UGET
Mathematics
Probability
If tan
$ \theta$
+ tan
$4\theta$
+ tan
$7\theta$
= tan
$\theta$
tan
$4\theta$
tan
$7\theta,$
then the general solution is
COMEDK UGET - 2014
COMEDK UGET
Mathematics
Trigonometric Functions
Let $S=\frac{2}{1} ^{n}C_{0}+\frac{2^{2}}{2} ^{n}C_{1}+\frac{2^{3}}{3} ^{n}C_{2}+ ...... +\frac{2^{n+1}}{n+1} ^{n}C_{n}$. Then $S$ equals
WBJEE - 2014
WBJEE
Mathematics
Integrals of Some Particular Functions
If the integers $m$ and $n$ are chosen at random from $1$ to $100$ , then the probability that a number of the form $7^{n}+7^{m}$ is divisible by $5$ , equals to
VITEEE - 2014
VITEEE
Mathematics
Bayes' Theorem
The area enclosed by the curves
$y = sin\, x + cos \,x$
and
$y\, =\, | cos\, x - sin\, x |$
over the interval
$ \Bigg [0 , \frac{\pi}{2} \Bigg] $
is
JEE Advanced - 2014
JEE Advanced
Mathematics
Area under Simple Curves
For
$x \in(0, \pi)$
, the equation
$\sin x+2 \sin 2 x-\sin 3 x=3$
has
JEE Advanced - 2014
JEE Advanced
Mathematics
Complex numbers
Let
$ V_r $
denote the sum of the first
$ r $
terms of an arithmetic progression
$ (AP) $
whose first term is
$ r $
and the common difference is
$ (2r - 1) $
. The sum
$ V_1 + V_2 + ..... + V_n $
is
AMUEEE - 2014
AMUEEE
Mathematics
Series
Let
$ f(x) $
be differentiable on the interval
$ (0, \infty) $
such that
$ f(1) = 1 $
and
$ lim_{t \rightarrow x} \frac {t^2f(x)-x^2f(t)}{t-x} =1 $
for each
$ x>0 $
. Then,
$ f(x) $
is
AMUEEE - 2014
AMUEEE
Mathematics
Differential equations
Let
$ f $
be the function
$ [-\pi, \pi] $
given by
$ f(0) = 9 \,and\,f(x) \,=\, f(x) = sin (\frac {9x}{2})/sin(\frac {x}{2}) $
for
$ x \neq 0 $
. The value of
$ \frac{2}{\pi} \int^{\pi}_{-\pi} $
$ f(x) dx $
is
AMUEEE - 2014
AMUEEE
Mathematics
Integrals of Some Particular Functions
Prev
1
...
593
594
595
596
597
...
900
Next