>
Mathematics
List of top Mathematics Questions
Given the PMF: \(P(X=x) = \alpha\) for \(x = 1,2\), \(= \beta\) for \(x = 4,5\), and \(= 0.3\) for \(x = 3\), with mean \(\mu = 4.2\). Find \(\sigma^2 + \mu^2\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Binomial theorem
If \(P\) is a variable point which is at a distance of 2 units from the line \(2x - 3y + 1 = 0\) and \(\sqrt{13}\) units from the point (5, 6), then the equation of the locus of \(P\) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Triangles
The point of intersection of the lines represented by \(\vec{r} = (\hat{i} - 6\hat{j} + 2\hat{k}) + t(\hat{i} + 2\hat{j} + \hat{k})\) and \(\vec{r} = (4\hat{j} + \hat{k}) + s(2\hat{i} + \hat{j} + 2\hat{k})\) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
Let the position vectors of the vertices of triangle ABC be \(\vec{a}, \vec{b}, \vec{c}\). If a point \(P\) on the plane of triangle has a position vector \(\vec{r}\) such that \(\vec{r} - \vec{b} = \vec{a} - \vec{c}\) and \(\vec{r} - \vec{c} = \vec{a} - \vec{b}\), then \(P\) is the
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
If the variance of the first \(n\) natural numbers is 10 and the variance of the first \(m\) even natural numbers is 16, then \(n : m =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Statistics
If the points A, B, C, D with position vectors \(\vec{i} + \vec{j} - \vec{k}, -\vec{i} + 2\vec{k}, \vec{i} - 2\vec{j} + \vec{k}, 2\vec{i} + \vec{j} + \vec{k}\) form a tetrahedron, then angle between faces ABC and ABD is
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
In a triangle ABC, if \(r_1 = 3, r_2 = 4, r_3 = 6\), then \(b =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
If \(\vec{a}, \vec{b}, \vec{c}\) are unit vectors and \(\vec{a} \perp \vec{b}\), and \((\vec{a} - \vec{c}) \cdot (\vec{b} + \vec{c}) = 0\), and \(\vec{c} = l\vec{a} + m\vec{b} + n(\vec{a} \times \vec{b})\), then \(n^2 =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
Evaluate the expression:
\[ \cos^3 \left( \frac{3\pi}{8} \right) \cos \left( \frac{3\pi}{8} \right) + \sin^3 \left( \frac{3\pi}{8} \right) \sin \left( \frac{3\pi}{8} \right) \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
If \(A + B + C = \dfrac{\pi}{4}\), then \(\sin 4A + \sin 4B + \sin 4C =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
If \( A + B + C = \frac{\pi}{4} \), then evaluate the expression:
\[ \sin 4A + \sin 4B + \sin 4C \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
In a triangle ABC, if \(\sin\frac{A}{2} = \dfrac{1}{4}\sqrt{\dfrac{5}{\sqrt{5}}}, a = 2, c = 5\), and \(b\) is an integer, then the area (in sq. units) of triangle ABC is
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
In \(\triangle ABC\), if \(a + c = 5b\), then \(\cot\dfrac{A}{2} \cdot \cot\dfrac{C}{2} =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Triangles
If the polynomial \( f(x) = x^4 + ax^3 + bx^2 + cx + d \) is divided by \( x - 1 \) and \( x + 1 \), the remainders are 5 and 3 respectively. If \( f(x) \) is divided by \( x^2 - 1 \), then the remainder is
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
Coefficient of $x^2$ in the expansion of $(x^2 + x - 2)^5$ is
AP EAPCET - 2025
AP EAPCET
Mathematics
Combinatorics
If \[ \binom{p}{q} = \binom{p}{q} \quad \text{and} \quad \sum_{i=0}^m \binom{10}{i} \binom{20}{m-i} \text{ is maximum, then find } m. \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Binomial theorem
The number of ways of distributing 3 dozen fruits (no two fruits are identical) to 9 persons such that each gets the same number of fruits is
AP EAPCET - 2025
AP EAPCET
Mathematics
Binomial Expansion
If $P_n$ denotes the product of the binomial coefficients in the expansion of $(1 + x)^n$, then find \[ \frac{P_{n+1}}{P_n}. \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Number System
If all letters of the word COMBINATION are arranged to form 11-letter words with \( C \) and \( N \) at the ends and no vowel in the middle position, find the number of such words.
AP EAPCET - 2025
AP EAPCET
Mathematics
Number System
If \( ax^2 + bx + e>0 \) for all \( x \in \mathbb{R} \) and the expressions \( cx^2 + ax + b \) and \( ax^2 + bx + c \) have their extreme values at the same point \( x \), then for the expression \( cx^2 + ax + b \), find the correct statement regarding its extreme value.
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
If $a = \ln \left( \frac{1}{z^2} \right)$ and $z$ is any non-zero complex number such that $|z| = 1$, then which of the following is the correct expression for $a$?
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
If \( a \pm bi \) and \( b \pm ai \) are roots of \( x^4 - 10x^3 + 50x^2 - 130x + 169 = 0 \), then find the value of \( \frac{a}{b} + \frac{b}{a} \).
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
The roots $\alpha, \beta$ of the equation \[ x^2 - 6(k-1)x + 4(k-2) = 0 \] are equal in magnitude but opposite in sign. If $\alpha>\beta$, then the product of the roots of the equation \[ 2x^2 - \alpha x + 6\beta (\alpha + 1) = 0 \] is
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
If \( x^2 - 5x + 6 \) is a factor of \( f(x) = x^4 - 17x^3 + kx^2 - 247x + 210 \), find the other quadratic factor of \( f(x) \).
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
If $2.5 + 5.9 + 8.13 + 11.17 + \ldots$ to $n$ terms = $an^3 + bn^2 + cn + d$, then find $a - b - c - d$
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices
Prev
1
...
55
56
57
58
59
...
924
Next