The domain of the function \( f(x) = \frac{\cos^{-1}x}{[x]} \) is
The function \( f(x) = \begin{cases} (1+2x)^{1/x}, & x \neq 0 \\ e^2, & x=0 \end{cases} \) is
If \( D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2+x & 1 \\ 1 & 1 & 2+y \end{vmatrix} \) for \( x \neq 0, y \neq 0 \), then D is
Inverse of the function \( f(x) = \frac{10^x - 10^{-x}}{10^x + 10^{-x}} \) is
The value of \( \int \frac{(x^2-1)dx}{x^3\sqrt{2x^4 - 2x^2 + 1}} \) is