Consider two infinitely large plane parallel conducting plates as shown below. The plates are uniformly charged with a surface charge density \( +\sigma \) and \( -\sigma \). The force experienced by a point charge \( +q \) placed at the mid point between the plates will be:
A wheel of radius $ 0.2 \, \text{m} $ rotates freely about its center when a string that is wrapped over its rim is pulled by a force of $ 10 \, \text{N} $. The established torque produces an angular acceleration of $ 2 \, \text{rad/s}^2 $. Moment of inertia of the wheel is............. kg m².
A steel wire of length 2 m and Young's modulus \( 2.0 \times 10^{11} \, \text{N/m}^2 \) is stretched by a force. If Poisson's ratio and transverse strain for the wire are \( 0.2 \) and \( 10^{-3} \) respectively, then the elastic potential energy density of the wire is \( \times 10^6\), in SI units .
Match List-I with List-II: List-I List-II
A body of mass 1kg is suspended with the help of two strings making angles as shown in the figure. Magnitude of tensions $ T_1 $ and $ T_2 $, respectively, are (in N):
A sportsman runs around a circular track of radius $ r $ such that he traverses the path ABAB. The distance travelled and displacement, respectively, are:
In the digital circuit shown in the figure, for the given inputs the P and Q values are:
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R). Assertion (A): Net dipole moment of a polar linear isotropic dielectric substance is not zero even in the absence of an external electric field. Reason(R): In absence of an external electric field, the different permanent dipoles of a polar dielectric substance are oriented in random directions. In the light of the above statements, choose the most appropriate answer from the options given below:
Two large plane parallel conducting plates are kept 10 cm apart as shown in figure. The potential difference between them is $ V $. The potential difference between the points A and B (shown in the figure) is: