If ABCD is a parallelogram, vector AB = 2i + 4j - 5k and vector AD = i + 2j + 3k, then the unit vector in the direction of BD is
For x ∈ (0, π), the equation sin x + 2sin2x −sin3x = 3 has
Let $y=y(x)$ be the solution of the differential equation $\left(x^2-3 y^2\right) d x+3 x y d y=0, y(1)=1$.Then $6 y^2( e )$ is equal to
Let \(S=\left\{0∈(0,\frac{π}{2}) : \sum^{9}_{m=1} \sec(θ+(m-1)\frac{π}{6})\sec(θ+\frac{mπ}{6}) = -\frac{8}{\sqrt3}\right\}\)Then,
Let: $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}=5 \hat{i}-3 \hat{j}+3 \hat{k}$ be there vectors If $\vec{r}$ is a vector such that, $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a}=0$, then $25|\vec{r}|^2$ is equal to