>
Indian Institute Of Technology Joint Admission Test for MSc
>
Mathematics for Economy
List of top Mathematics for Economy Questions asked in Indian Institute Of Technology Joint Admission Test for MSc
Consider a linear programming problem (π) min π§ = 4π₯
1
+ 6π₯
2
+ 6π₯
3
subject to
π₯
1
+3π₯
2
β₯3
π₯
1
+2π₯
3
β₯5
π₯
1
, π₯
2
, π₯
3
β₯ 0
If
\(π₯^β = (π₯^β_1 , π₯^β_2 , π₯^β_3 )\)
is an optimal solution and π§
β
is an optimal value of (π) and π€
β
=
\((π€^β_1 , π€^β_2 )\)
is an optimal solution of the dual of (π) then
IIT JAM EN - 2023
IIT JAM EN
Mathematics for Economy
Optimization
For KβR, let π(π₯)=π₯
4
+2π₯
3
+ππ₯
2
βπ, XβR. If π₯=
\(\frac{3}{2}\)
is a point of local minima of π and π is the global minimum value of π then π(0) β π is equal to _______ (in integer).
IIT JAM EN - 2023
IIT JAM EN
Mathematics for Economy
Optimization
If (π₯
β
, π¦
β
) is the optimal solution of the problem
maximize π(π₯, π¦) = 100βπ
βπ₯
βπ
βπ¦
subject to ππ₯+π¦=
\(\frac{π}{πβ1},\)
π₯ β₯ 0, π¦ β₯ 0.
Then
\(\sqrt{\frac{y^*}{x^*}}\)
is equal to ________ (round off to 2 decimal places).
IIT JAM EN - 2023
IIT JAM EN
Mathematics for Economy
Optimization
Let
\(x^3+3y^2=4\)
for all
\(x,y\isin\R,\)
\(y'=\frac{dy}{dx}\)
and
\(y''=\frac{d^2y}{dx^2}\)
. Then
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Differential Equations
Let a second order difference equation be
\(y_{n+2} + 4y_n = 4y_{n+1}, \, n=2,3,4,......, \,\, y_0=1, y_1=4\)
Then the general solution is
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Differential Equations
Let the function
\(f: R^2β’R\)
be
\(f(x, y) = \frac{xy^2}{ x^3+ 2xy + y^3}\,\, f(0, 0) = 0.\)
Then
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Differential Equations
Let Ζ be defined by $f(x) = |x| + |cos({\frac{\pi }{2} - x }), x \, \, \epsilon \, \,(-\frac{\pi }{2},\frac{\pi }{2}).$ Then
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Differential Equations
Let the system of equations be αu+w=0, u+αν =0, v+αw=0, where a ∈ ℜ. Then the system has infinite solutions if a =_____ (in integer).
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Differential Equations
Let f: [0,β) β
\(\R\)
be a function defined by
\(f(x)=\frac{x+1}{x+2}\)
for all
\(x\isin\R\)
. Then f is
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Differential Calculus
Let a,b $\epsilon$ R. If f(x)= ax+bis such that
a+b=4 and f(x + y) = f(x)+f(y)-2 for all x, y $\epsilon$ R,
then $ \sum_{n=1} ^{50} f(n)$ =__________ (in integer).
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Differential Calculus
Choose the option that represents the original linear programming problem based on the initial simplex tableau given below, where
\(S_i\)
represents slack/surplus variables and
\(A_i\)
represents the artificial variables corresponding to the
\(i^{th}\)
constraint:
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Linear Algebra
Which of the following statements is CORRECT for Game A and Game B?
Game A:
Mary wants to watch a movie and John is interested in watching a football match. Both wish to be together. The payoff matrix is:
Game B
: The Prisoner's dilemma problem is shown below:
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Linear Algebra
The sum of the eigen values of the square matrix $ \begin{pmatrix} {1} & {1} & {3}\\ {1} & {5} & {1}\\ {3} & {1} & {1} \end{pmatrix}$ (in integer).
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Linear Algebra
Let the linear programming problem be
Maximize Z = - 0.2x
1
+ x
2
subject to 2x
1
+ 5x
2
≤ 70,
x
1
+ x
2
≤ 20,
x
1
, x
2
≥ 0.
If x
1
= a and x
2
= b is the optimal solution, then a+b=______ (in integer).
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Linear Algebra
Which of the following functions is/are homogeneous?
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Preliminaries and functions
If
\(\int t\log(1+\frac{2}{t})dt=g(t)(\frac{t^2}{2}-2)+f(t)\frac{t^2}{2}+Kt+C\)
, where C is an arbitrary constant, then 2K is ______ (in integer).
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Preliminaries and functions
Prev
1
2
Next