>
IIT JAM EN
>
Mathematics for Economy
List of top Mathematics for Economy Questions asked in IIT JAM EN
Let π =
\(\begin{bmatrix} K & 1 & 1 \\ 1 & K & 1 \\ 1 & 1 & K \end{bmatrix}\)
and I
3
be the identity matrix of order 3. If the rank of the matrix 10 πΌ
3
β π is 2 then π is equal to _____ (in integer).
IIT JAM EN - 2023
IIT JAM EN
Mathematics for Economy
Linear Algebra
For KβR, let π(π₯)=π₯
4
+2π₯
3
+ππ₯
2
βπ, XβR. If π₯=
\(\frac{3}{2}\)
is a point of local minima of π and π is the global minimum value of π then π(0) β π is equal to _______ (in integer).
IIT JAM EN - 2023
IIT JAM EN
Mathematics for Economy
Optimization
If (π₯
β
, π¦
β
) is the optimal solution of the problem
maximize π(π₯, π¦) = 100βπ
βπ₯
βπ
βπ¦
subject to ππ₯+π¦=
\(\frac{π}{πβ1},\)
π₯ β₯ 0, π¦ β₯ 0.
Then
\(\sqrt{\frac{y^*}{x^*}}\)
is equal to ________ (round off to 2 decimal places).
IIT JAM EN - 2023
IIT JAM EN
Mathematics for Economy
Optimization
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Differential Equations
Let f: [0,β) β
\(\R\)
be a function defined by
\(f(x)=\frac{x+1}{x+2}\)
for all
\(x\isin\R\)
. Then f is
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Differential Calculus
Let a second order difference equation be
\(y_{n+2} + 4y_n = 4y_{n+1}, \, n=2,3,4,......, \,\, y_0=1, y_1=4\)
Then the general solution is
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Differential Equations
Let the function
\(f: R^2β’R\)
be
\(f(x, y) = \frac{xy^2}{ x^3+ 2xy + y^3}\,\, f(0, 0) = 0.\)
Then
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Differential Equations
Choose the option that represents the original linear programming problem based on the initial simplex tableau given below, where
\(S_i\)
represents slack/surplus variables and
\(A_i\)
represents the artificial variables corresponding to the
\(i^{th}\)
constraint:
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Linear Algebra
Which of the following statements is CORRECT for Game A and Game B?
Game A:
Mary wants to watch a movie and John is interested in watching a football match. Both wish to be together. The payoff matrix is:
Game B
: The Prisoner's dilemma problem is shown below:
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Linear Algebra
Let Ζ be defined by $f(x) = |x| + |cos({\frac{\pi }{2} - x }), x \, \, \epsilon \, \,(-\frac{\pi }{2},\frac{\pi }{2}).$ Then
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Differential Equations
Which of the following functions is/are homogeneous?
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Preliminaries and functions
The sum of the eigen values of the square matrix $ \begin{pmatrix} {1} & {1} & {3}\\ {1} & {5} & {1}\\ {3} & {1} & {1} \end{pmatrix}$ (in integer).
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Linear Algebra
Let a,b $\epsilon$ R. If f(x)= ax+bis such that
a+b=4 and f(x + y) = f(x)+f(y)-2 for all x, y $\epsilon$ R,
then $ \sum_{n=1} ^{50} f(n)$ =__________ (in integer).
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Differential Calculus
Let the system of equations be αu+w=0, u+αν =0, v+αw=0, where a ∈ ℜ. Then the system has infinite solutions if a =_____ (in integer).
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Differential Equations
If
\(\int t\log(1+\frac{2}{t})dt=g(t)(\frac{t^2}{2}-2)+f(t)\frac{t^2}{2}+Kt+C\)
, where C is an arbitrary constant, then 2K is ______ (in integer).
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Preliminaries and functions
Let the linear programming problem be
Maximize Z = - 0.2x
1
+ x
2
subject to 2x
1
+ 5x
2
≤ 70,
x
1
+ x
2
≤ 20,
x
1
, x
2
≥ 0.
If x
1
= a and x
2
= b is the optimal solution, then a+b=______ (in integer).
IIT JAM EN - 2022
IIT JAM EN
Mathematics for Economy
Linear Algebra
Prev
1
2
Next