>
CUET (UG)
List of top Questions asked in CUET (UG)
Match List - I with List- II.
List - I (Vegetative propagules)
List - II (Example)
(A) Leaf buds
(I) Water hyacinth
(B) Rhizome
(II) Agave
(C) Offset
(III) Ginger
(D) Bulbil
(IV) Bryophyllum
Choose the correct answer from the options given below:
CUET (UG) - 2023
CUET (UG)
Biology
Reproduction in Plants
Which of the following hormones are secreted by placenta?
LCG
hPL
Estrogens
Progestogens
Relaxin
Choose the correct answer from the options given below:
CUET (UG) - 2023
CUET (UG)
Biology
Hormones
If A and B are events such that
\(P(A'UB')=\frac{1}{3}\)
and
\(P(AUB) = \frac{4}{9}\)
then the value of
\(P(A') + P(B')\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Probability
A bag contains 12 white and 18 red balls. Two balls are drawn in succession without replacement. The probability that the first is red and second is white is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Probability
The value of
\(∫\frac{dx}{x^2-6x+13}\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Integration by Partial Fractions
Match List I with List II
LIST I
LIST II
A
.
\(\frac{d}{dx} [tan^{-1} (\frac{3x-x^3}{1-3x^2})]\)
I
.
\(\frac{3}{1+x^2}\)
B
.
\(\frac{d}{dx}[cos^{-1}(\frac{1-x^2}{1+x^2})]\)
II
.
\(\frac{-3}{1+x^2}\)
C
.
\(\frac{d}{dx}[cos^{-1} (\frac{2x}{1+x^2})]\)
III
.
\(\frac{-2}{1+x^2}\)
D
.
\(\frac{d}{dx}[cot^{-1}(\frac{3x-x^3}{1-3x^2})]\)
IV
.
\(\frac{2}{1+x^2}\)
Choose the correct answer from the options given below:
CUET (UG) - 2023
CUET (UG)
Mathematics
Derivatives
For the LPP, Min
\(Z= 5x + 7y\)
subject to
\(x≥0, y≥0; 2x+y≥8, x+2y≥ 10,\)
the basic feasible solutions are:
CUET (UG) - 2023
CUET (UG)
Mathematics
Linear Programmig Problem
If |
\(\vec{a}\)
| = 5, |
\(\vec{b}\)
| = 2 and |
\(\vec{a}\)
·
\(\vec{b}\)
| = 8 then the value of |
\(\vec{a} \)
×
\(\vec{b} \)
| is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Vector Algebra
If
\(|\vec {a}+\vec {b}|=15, |\vec {a}-\vec{b}| =10,|\vec a|=\frac{11}{2}\)
then the value of |
\(\vec b\)
| is/are:
CUET (UG) - 2023
CUET (UG)
Mathematics
Vector Algebra
The angle between the straight lines
\(\frac{x+4}{2}=\frac{y+5}{5}=\frac{z+6}{3} \space and \space \frac{x-4}{10}=\frac{y-5}{2}=\frac{z-6}{-10}\)
is.
CUET (UG) - 2023
CUET (UG)
Mathematics
Straight lines
The direction ratios of the line perpendicular to the lines
\(\frac{x-7}{-6}= \frac{y+17}{4}= \frac{z-6}{2} \space and \space \frac {x+5}{6}=\frac{y+3}{3}=\frac{z-4}{-6}\)
are proportional to:
CUET (UG) - 2023
CUET (UG)
Mathematics
Straight lines
The integrating factor of
\(sinx \frac{dy}{dx}+2ycosx=4\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Integration
The maximum value of Z= 2x + 3y subject to the constraints x≥0, y>0; x+y≤ 10, 3x+4y≤ 36 is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Linear Programmig Problem
The solution of the differential equation
\(\frac{dy}{dx}=-\frac{x}{y}\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Solution of Differential Equations
Area lying between the curves
\(y^2 = 9x\)
and y = 3x is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Area under Simple Curves
Area lying in first quadrant and bounded by the circle
\(x^2+ y^2 = 9\)
and the lines x = 1 and x = 3 is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Area under Simple Curves
The equation of the normal to the curve y = 2sinx at (0, 0) is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Equation of a Line
The function
\(f(x)= \frac{x^4}{4}-\frac{x^2}{2}\)
has
CUET (UG) - 2023
CUET (UG)
Mathematics
Local maxima and minima
The value of
\(\int\limits_{-1}^1x^2 [x] dx\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Definite Integral
The value of
\(\int\limits_{-3}^2x^2 |2x| dx\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Definite Integral
If A=(2, 3), B = (-1, 0), C = (4, 6) then area of the parallelogram ABCD is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Area Of A Parallelogram
The derivative of
\(f (cot x)\)
with respect to
\(g (cosec x)\)
at
\(x=\frac{π}{4}\)
(where
\(f'(1)=2.g'(\sqrt2)=4\)
) is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Derivatives
If
\(x = e^{y+e^y+.... to \space ∞}, x> 0\)
then
\(\frac{d^2y}{dx^2}\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Second Order Derivatives
The value of the determinant
\(\begin{vmatrix}cos^2θ&cosθsinθ&0 \\-sinθ&cosθ&0 \\ 0&0&1 \end{vmatrix}\)
is equal to
CUET (UG) - 2023
CUET (UG)
Mathematics
Determinants
The values of b for which the function f(x) = cos x + bx+ a decreases on R are
CUET (UG) - 2023
CUET (UG)
Mathematics
Increasing and Decreasing Functions
Prev
1
...
274
275
276
277
278
...
320
Next