Let the angle of the prism be \( A = 30^\circ \), the angle of incidence \( i = 60^\circ \), and the angle of emergence be \( e = 0^\circ \), as the emergent ray is normal to the other surface.
According to the formula for the refractive index \( n \) of a prism:
\[
n = \frac{\sin \left( \frac{A + i}{2} \right)}{\sin \left( \frac{A}{2} \right)}
\]
Substituting the known values:
\[
n = \frac{\sin \left( \frac{30^\circ + 60^\circ}{2} \right)}{\sin \left( \frac{30^\circ}{2} \right)} = \frac{\sin (45^\circ)}{\sin (15^\circ)}
\]
\[
n = \frac{\frac{\sqrt{2}}{2}}{\sin (15^\circ)} \approx \frac{\frac{\sqrt{2}}{2}}{0.2588} \approx \sqrt{3}
\]
Thus, the refractive index \( n \) of the prism is \( \sqrt{3} \).