>
AMUEEE
>
Mathematics
List of top Mathematics Questions asked in AMUEEE
Let A = {
$ (x,y): y = e^{-x} $
} and B = {
$ (x,y):y=-x $
}. Then the correct statement is :
AMUEEE - 2013
AMUEEE
Mathematics
Relations and functions
If
$ p,q $
are positive real numbers such that
$ pq = 1 $
, then the least value of
$ (1 + p) (1 + q) $
is
AMUEEE - 2013
AMUEEE
Mathematics
Application of derivatives
Let
$ f(x) = (x+2)^2 -2 , x \ge -2 $
. Then,
$ f^{-1}(x) $
is equal to
AMUEEE - 2013
AMUEEE
Mathematics
Functions
Let
$ Z $
be the set of integers. Then, the relation
$R = \{ (a, b) :1 + ab > 0 \}$
on
$z$
is
AMUEEE - 2013
AMUEEE
Mathematics
Functions
Which one of the following is not true?
AMUEEE - 2013
AMUEEE
Mathematics
Trigonometric Functions
The general solution of sin
$ 3x + sin\, x - 3 \,sin 2x $
=
$ cos\, 3x + cos\, x - 3 cos \,2x $
is
AMUEEE - 2013
AMUEEE
Mathematics
Trigonometric Functions
The line
$ x = my + c $
is normal to
$ x^2 = - 4ay $
, if c is equal to
AMUEEE - 2013
AMUEEE
Mathematics
introduction to three dimensional geometry
If P is a point
$ (x,y) $
and
$ P_1 = (3,0),P_2 = (-3,0) $
and
$ 16 x^2 + 25y^2 = 400 $
, then
$ PP_1 + PP_2 $
is equal to
AMUEEE - 2013
AMUEEE
Mathematics
coordinates of a point in space
The total number of terms in the expansion of
$ ( 1 + x ) ^{2n} - ( 1 - x ) ^{2n} $
after simplification is
AMUEEE - 2012
AMUEEE
Mathematics
binomial expansion formula
If
$f(x)$
=
$ \begin{vmatrix}x+1&x&1\\ x\left(x+1\right)&x\left(x-1\right)&2x\\ x\left(x+1\right)\left(x-1\right)&x\left(x-1\right)\left(x-2\right)&3x\left(x-1\right)\end{vmatrix} $
, then
$ f(1000) $
is equal to
AMUEEE - 2012
AMUEEE
Mathematics
Properties of Determinants
The equation of the plane through the points
$ (2, 2,1) $
and
$ (9, 3, 6) $
and perpendicular to the plane
$ 2x + 6y + 6 z - 1 = 0 $
is
AMUEEE - 2012
AMUEEE
Mathematics
Equation of a Line in Space
If
$ f(x) = log_x $
{
$ ln(x) $
},then
$ f'(e) $
is equal to
AMUEEE - 2012
AMUEEE
Mathematics
Logarithmic Differentiation
If
$ \begin{vmatrix}\left(x+a\right)&b&c\\ a&\left(x+b\right)&c\\ a&b&\left(x+c\right)\end{vmatrix} $
= 0 , then
$ x $
=
AMUEEE - 2012
AMUEEE
Mathematics
Properties of Determinants
If the sum of first
$ n $
natural numbers is
$ 1/5 $
times the sum of their squares, then
$ n $
is equal to
AMUEEE - 2012
AMUEEE
Mathematics
Series
If
$ log_{10}2, log_{10}(2^x-1) $
and
$ log_{10}(2^x+3) $
are in
$AP$
, then
$x$
=
AMUEEE - 2012
AMUEEE
Mathematics
sequences
The inverse of a symmetric matrix is
AMUEEE - 2012
AMUEEE
Mathematics
Applications of Determinants and Matrices
If the
$ (3r)^{th} \,and\, (r+2)^{th} $
terms in the binomial expansion of
$ (1 + x)^{2n} $
are equal, then
AMUEEE - 2012
AMUEEE
Mathematics
binomial expansion formula
The fixed point
$P$
on the curve
$ y = x^2 - 4x + 5 $
such that the tangent at
$ P $
is perpendicular to the line
$ x + 2y = 7 $
is given by
AMUEEE - 2012
AMUEEE
Mathematics
Application of derivatives
If
$ I_{1}=\int_{0}^{\frac{\pi}{2}} f (sin \,2x)sin \,xdx $
and
$ I_2 = \int^{\pi/4}_{0}\,f(cos2x) cosx \,dx\,then\, I_1/I_2 $
=
AMUEEE - 2011
AMUEEE
Mathematics
Integrals of Some Particular Functions
A line is drawn through the point
$ P(3,11) $
to cut the circle
$ x^2+ y^2 = 9 $
at point
$ A $
and
$ B $
. Then,
$ PA \cdot PB $
is equal to
AMUEEE - 2011
AMUEEE
Mathematics
Circle
Total number of solutions of
$ sin^4x +cos^4x = sin x cos x $
is
$ [0,2\pi] $
is equal to
AMUEEE - 2011
AMUEEE
Mathematics
Trigonometric Equations
The locus of the point of intersection of the tangents at the extremeties of a chord of the circle
$ x^2+y^2 = a^2 $
which touches the circle
$ x^2 + y^2 - 2ax = 0 $
passes through the point
AMUEEE - 2011
AMUEEE
Mathematics
Circle
The projections of a directed lines segment on the coordinate axes are
$ 12, 4, 3 $
. The direction cosines of the line are
AMUEEE - 2011
AMUEEE
Mathematics
Three Dimensional Geometry
If the lines joining the origin to the intersection of the line $ y = mx + 2 $ and the circle $ x^2 + y^2 = 1 $ are at right angles, then
AMUEEE - 2011
AMUEEE
Mathematics
Straight lines
The number of real values of
$ x $
which satisfy the equation
$ |\frac{x}{x-1}| + |x| = \frac{x}{|x-1|} $
is
AMUEEE - 2011
AMUEEE
Mathematics
complex numbers
Prev
1
2
3
4
5
Next