>
AIEEE
>
Mathematics
List of top Mathematics Questions asked in AIEEE
If
$f: R \rightarrow S $
defined by
$ f(x)=\sin x-\sqrt{3} \,\cos\,x+\,$
1, is onto, function then S = ?
AIEEE - 2004
AIEEE
Mathematics
Relations and functions
The graph of the function
$y = f(x) $
is symmetrical about the line
$x = 2$
, then
AIEEE - 2004
AIEEE
Mathematics
Relations and functions
A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank of the river is
$60^{\circ}$
and when he retires
$40$
meter away from the tree the angle of elevation becomes
$30^{\circ}$
. The breadth of the river is
AIEEE - 2004
AIEEE
Mathematics
Trigonometric Functions
If
$\left(\frac{1+i}{1-i}\right)^{x}=1,$
then
AIEEE - 2003
AIEEE
Mathematics
Complex Numbers and Quadratic Equations
If
$1,\omega,\omega^2$
are the cube roots of unity, then $\Delta=\begin{vmatrix} 1&\omega^n &\omega^{2n} \\[0.3em] \omega^n &\omega^{2n} & 1 \\[0.3em] \omega^{2n} &1& \omega^n \end{vmatrix}$ is equal to
AIEEE - 2003
AIEEE
Mathematics
Determinants
The sum of the radii of inscribed and circumscribed circles for an n sided regular polygon of side a, is
AIEEE - 2003
AIEEE
Mathematics
Circle
The number of real solutions of the equation
$x^2 - 3 |x| + 2 = 0$
is
AIEEE - 2003
AIEEE
Mathematics
complex numbers
If
$A = \begin{bmatrix}a&b\\ b&a\end{bmatrix}$
and
$A^{2}\begin{bmatrix}\alpha&\beta \\ \beta&\alpha\end{bmatrix}$
, then
AIEEE - 2003
AIEEE
Mathematics
Matrices
If
$f (a + b - x) = f (x)$
, then
$\int\limits^{b}_{{a}}x\, f\, (x) \,dx$
is equal to
AIEEE - 2003
AIEEE
Mathematics
integral
If
$f(x) = \begin{cases} xe^{-\left(\frac{1}{\left|x\right|}+\frac{1}{x}\right)}, & \text{$
x \ne0
$} \\[2ex] 0, & \text{$
x=0
$} \end{cases}$
then
$f (x)$
is
AIEEE - 2003
AIEEE
Mathematics
Continuity and differentiability
If
$f (x) = x^n$
, then the value of
$f \left(1\right)-\frac{f '\left(1\right)}{1!}+\frac{f ''\left(1\right)}{2!}-\frac{f "'\left(1\right)}{3!}+\dots+\frac{\left(-1\right)^{n}f ^{n}\left(1\right)}{n!}$
is
AIEEE - 2003
AIEEE
Mathematics
Continuity and differentiability
The real number
$x$
when added to its inverse gives the minimum value of the sum at
$x$
equal to
AIEEE - 2003
AIEEE
Mathematics
Application of derivatives
The trigonometric equation
$sin^{-1} x = 2\, sin^{-1}$
a, has a solution for
AIEEE - 2003
AIEEE
Mathematics
Inverse Trigonometric Functions
Let f (x) be a polynomial function of second degree. If
$f (1) = f (- 1)$
and
$a, b, c$
are in
$A. P.,$
then
$f' (a), f' (b)$
and
$f' (c)$
are in
AIEEE - 2003
AIEEE
Mathematics
Continuity and differentiability
The sum of the series
$\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{3\cdot4}-...... $
upto
$8$
is equal to
AIEEE - 2003
AIEEE
Mathematics
Sequence and series
If
$\begin{vmatrix}a&a^{2}&1+a^{3}\\ b&b^{2}&1+b^{3}\\ c&c^{2}&1+c^{3}\end{vmatrix}=0 $
and vectors
$(1, a, a^2) (1, b, b^2)$
and
$(1, c, c^2)$
are non-coplanar, then the product abc equals
AIEEE - 2003
AIEEE
Mathematics
Vector Algebra
A tetrahedron has vertices at
$ O (0, 0, 0), A(1, 2, 1) B(2, 1, 3 )$
and
$C(-1, 1, 2)$
. Then the angle between the faces OAB and ABC will be
AIEEE - 2003
AIEEE
Mathematics
introduction to three dimensional geometry
If
$z$
and
$?$
are two non-zero complex numbers such that
$|z?| = 1$
, and Arg
$(z)$
- Arg
$\left(\omega\right)=\frac{\pi}{2},$
then
$\bar{z}\omega$
is equal to
AIEEE - 2003
AIEEE
Mathematics
Complex Numbers and Quadratic Equations
If
$a > 0$
and discriminant of
$ax^2 + 2bx +c $
is -ve then
$\begin{vmatrix}a&b&ax+b\\ b &c&bx+c\\ ax+b &bx+c&0\end{vmatrix} $
is equal to
AIEEE - 2002
AIEEE
Mathematics
Determinants
The domain of
$\sin^{-1}\left[\log_3\left(\frac{x}{3}\right)\right]$
is
AIEEE - 2002
AIEEE
Mathematics
Sets
If
$(\omega\,\neq\,1)$
is a cube root of unity , then $ \begin{vmatrix} 1 &1+i+\omega^2 &\omega^2 \\[0.3em] 1-i&-1 & \omega^2-1 \\[0.3em] -i & -1+\omega-i& -1 \end{vmatrix}=$
AIEEE - 2002
AIEEE
Mathematics
Determinants
If the vectors
$\vec{ a }=x \hat{ i }+y \hat{ j }+z \hat{ k }$
and such that
$\vec{ a }, \vec{ c }$
and
$\vec{ b }$
form a right handed system, then
$\vec{ c }$
is :
AIEEE - 2002
AIEEE
Mathematics
Vectors
The direction ratios of a normal to the plane through
$ (1, 0, 0), (0, 1, 0)$
which makes angles of
$\frac{\pi}{4}$
with the plane
$x + y = 3$
are
AIEEE - 2002
AIEEE
Mathematics
introduction to three dimensional geometry
The positive integer just greater than
$(1 + 0.0001)^{10000}$
is
AIEEE - 2002
AIEEE
Mathematics
Binomial theorem
If the sum of the coefficients in the expansion of
$(a + b)^n$
is 4096, then the greatest coefficient in the expansion is
AIEEE - 2002
AIEEE
Mathematics
Binomial theorem
Prev
1
...
5
6
7
8
Next