>
AIEEE
>
Mathematics
List of top Mathematics Questions asked in AIEEE
The system of equations
$\alpha \, x + y + z = \alpha - 1$
$x + \alpha y + z = \alpha - 1$
$x + y + \alpha z = \alpha - 1$
has infinite solutions, if
$\alpha$
is
AIEEE - 2005
AIEEE
Mathematics
Determinants
Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the same house, is:
AIEEE - 2005
AIEEE
Mathematics
Conditional Probability
The sum of the series
$1+\frac{1}{4\cdot2!}+\frac{1}{16\cdot 4!}+\frac{1}{64\cdot 6!} + \ldots \infty$
is :
AIEEE - 2005
AIEEE
Mathematics
Sum of First n Terms of an AP
The normal to the curve
$x=a\left(cos\,\theta+\theta\,sin\,\theta \right). y=a\left(sin\,\theta -\theta\,cos\,\theta \right)$
at any point
$'\theta'$
is such that :
AIEEE - 2005
AIEEE
Mathematics
Tangents and Normals
$\int\left\{\frac{\left(log \,x -1\right)}{1+\left(log \,x\right)^{2}}\right\}^{2}dx$
is equal to :
AIEEE - 2005
AIEEE
Mathematics
integral
If the letters of the word SACHIN are arranged in all possible ways and these words are written out as in dictionary, then the word SACHIN appears at serial number:
AIEEE - 2005
AIEEE
Mathematics
permutations and combinations
Area of the greatest rectangle that can be inscribed in the ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
is :
AIEEE - 2005
AIEEE
Mathematics
Ellipse
Let
$P$
be the point
$(1, 0)$
and
$Q$
a point on the locus
$y^2 = 8x$
. The locus of mid point of
$PQ$
is:
AIEEE - 2005
AIEEE
Mathematics
Conic sections
If
$C$
is the mid point of
$AB$
and
$P$
is any point outside
$AB$
, then :
AIEEE - 2005
AIEEE
Mathematics
Vector Algebra
Let
$\alpha$
and
$\beta$
be the distinct roots of
$ax^2 + bx + c = 0$
, then
$\displaystyle \lim_{x \to\alpha} \frac{1- \cos \left(ax^{2} + bx + c\right)}{\left(x-\alpha\right)^{2}} $
is equal to
AIEEE - 2005
AIEEE
Mathematics
limits and derivatives
The value of
$a$
for which the sum of the squares of the roots of the equation
$x^2 - (a - 2) x - a - 1 = 0$
assume the least value is
AIEEE - 2005
AIEEE
Mathematics
Complex Numbers and Quadratic Equations
If in a frequency distribution, the mean and median are
$21 $
and
$22$
respectively, then its mode is approximately
AIEEE - 2005
AIEEE
Mathematics
Statistics
$\displaystyle \lim_{n \to\infty} \left[\frac{1}{n^{2}} \sec^{2} \frac{1}{n^{2}} + \frac{2}{n^{2}} \sec^{2} \frac{4}{n^{2}}.......... + \frac{1}{n}\sec^{2} 1 \right] $
equals
AIEEE - 2005
AIEEE
Mathematics
limits and derivatives
If
$x$
is so small that
$x^3$
and higher powers of
$x$
may be neglected, then
$\frac{\left(1+x\right)^{\frac{3}{2}} - \left(1+ \frac{1}{2}x\right)^{3}}{\left(1-x\right)^{\frac{1}{2}}} $
may be approximated as
AIEEE - 2005
AIEEE
Mathematics
Binomial theorem
A real valued function
$f (x) $
.Satisfies the functional equation
$f(x- y) =f (x) f(y)-f(a-x) f(a+y)$
where a is a given constant and
$f(0) = 1$
. Then
$f(2a - x)$
is equal to
AIEEE - 2005
AIEEE
Mathematics
Relations and functions
$A$
and
$ B$
are two like parallel forces. A couple of moment
$H$
lies in the plane of
$A$
and
$B$
and is contained with them. The resultant of
$A$
and
$B$
after combining is displaced through a distance :
AIEEE - 2005
AIEEE
Mathematics
Vector Algebra
Let
$R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$
be a relation on the set
$A = \{1, 2, 3, 4\}$
. The relation R is
AIEEE - 2004
AIEEE
Mathematics
Relations and functions
If
$a_1, a_2, a_3,......, a_n $
,.... are in G.P., then the value of the determinant
$\begin{vmatrix}\log a_{n}& \log a_{n+1}&\log a_{n+2}\\ \log a_{n+3}& \log a_{n+4}&\log a_{n+5}\\ \log a_{n+6} &\log a_{n+7}& \log a_{n+8}\end{vmatrix} $
, is
AIEEE - 2004
AIEEE
Mathematics
Determinants
If
$(1 - p)$
is a root of quadratic equation
$x^2 + px + (1- p) = 0$
, then its roots are
AIEEE - 2004
AIEEE
Mathematics
Complex Numbers and Quadratic Equations
A variable circle passes through the fixed point A (p, q) and touches x-axis. The locus of the other end of the diameter through A is
AIEEE - 2004
AIEEE
Mathematics
Conic sections
If
$\displaystyle\lim_{x \to\infty} \left(1+ \frac{a}{x} + \frac{b}{x^{2}}\right)^{2x} = e^{2} $
, then the values of a and b, are
AIEEE - 2004
AIEEE
Mathematics
limits and derivatives
The range of the function
$f\left(x\right) = ^{7-x}P_{x-3}$
is
AIEEE - 2004
AIEEE
Mathematics
permutations and combinations
The coefficient of the middle term in the binomial expansion in powers of x of
$(1+ \alpha x)^4$
and of
$ (1 - \alpha x)^6$
is the same if
$\alpha$
equals
AIEEE - 2004
AIEEE
Mathematics
Binomial theorem
The coefficient of
$x^n$
in expansion of
$(1+ x)(1- x)^n$
is
AIEEE - 2004
AIEEE
Mathematics
Binomial theorem
Let $A=\begin{pmatrix} 1&-1 &1 \\[0.3em] 2 &1 &-3 \\[0.3em] 1 &1&1 \end{pmatrix}
$ and $
\,10\,B=\begin{pmatrix} 4&2 &2 \\[0.3em] -5 &0 & \alpha \\[0.3em] 1 &-2&3 \end{pmatrix}
$. If B is the inverse of A , then $
\alpha$ is
AIEEE - 2004
AIEEE
Mathematics
Matrices
Prev
1
...
4
5
6
7
8
Next